1.0

2.0

MICHIGAN STATE UNIVERSITY
COMPUTER LABORATORY
6000 SCOPE MEMO NO. 134.1

July 13, 1979

1FP,CP2TT and Associated Routines

Introduction

This 6SM describes 1FP, CP2TT, and associated routines on the 6500 which
interface with the FREND system. This includes portions of CPSP and CPCIO.
Together these form the system for input/output to and from FREND.

The entire front-end development project consisted also of extensive changes
to MANAGER and other interactive support routines (6SM 135) and the
development of FREND (6SM 124).

This 6SM replaces 6SM 134,

External Reference Specifications
2.1 Major front-end components.

The major components of the 6500 side of the front end can be broken
down into 2 major subsystems:

1. The input/output subsystem:
1FP - front end stack request processor
CP2TT - issues stack requests for 1FP from CIO requests.
CPSP - primarily designed to process stack requests for the
disks, CPSP also handles stack requests for 1FP.
CPCIO - processes all CIO calls, and invokes CP2TT for I/0 on
connected files.

2. The control subsystem:
MANAGER - the monitor for all interactive jobs
MAN - a PPU helper for MANAGER

2.2 T/32 - 6500 Interface

All communication between the 7/32 and the 6500 is= done by 1FP, via the
6500-7/32 DMA interface. 1FP is a dedicated PPU which is initiated by
MIR when there is an outstanding stack request on device FD, the front
end 1interface. 1FP remains active until MANAGER is dropped and all
requests have been processed. It performs the following functions,

OdM NO.
Page 2
203

134.1

1. CIC calls cause CP2TT to issue the stack réquest. The request is
é;sued directly by a PPU (O.FWRP). This is done by MSX,MSO, and
\ RO

2. Transfer data over the control ports for MANAGER, ARGUS, and the
stimulator. Control ports are pseudo files on which there is
always an outstanding read or write in progress. They are used
to transfer special control information between the 6500 and the
7/32. Control ports have no FNT entries.

CI0 interface.

All CIO requests on connected files are trapped by CPCIOC and passed
directly to CP2TT. CP2TT then formats a special front-end stack
request and passes it to CPSP. CPSP then passes this request to 1Fp,
which processes it.

2.3.1 A read on a connected file is supported by two CIO operations:.

READ (10B) - order code O.FREAD
RDSKIP (20B) ~ order code O,FRDSK

These operations have the following rules and conventions:-

. A READ is issued by a FORTRAN formatted READ statement,
and by a COBOL READ. A RDSKIP is issued by a FORTRAN
BUFFER-IN statement.

. The maximum line length is 240 characters.

. If the user buffer will not hold the entire line, as much
as will fit is transferred. For a normal read, error
code 10B (device capacity exceeded) is returned. For a
read-skip, no error code is returned.

. A& prompt character (¥) will be issued if prompt is on,
unless typed ahead data is present to satisfy the read
when the read is issued.

. The binary/coded flag in the FET has no effect on READ
and RDSKIP.

N A single READ or RDSKIP CIO request will transfer only
one line of data, regardless of the amount of extra room
in the user buffer, and the presence of typed-ahead data
on the 7/32 side.

. When the user enters a line on the 7/32 which is longer
than the current setting of INLEN (default=240), that
line is broken at INLEN characters, as if the user had
typed an end-of-line. A program on the 6500 which reads
that 1line cannot tell if it was terminated by an
end-of-line, or automatically broken by the 7/32 because
of its length.

. If a read is issued and the requested data is not
available on the 7/32, the user job is swapped out until
that data becomes available. :

. Character translation is described in section 2.&.

6SM No. 134.1
Page 3

2.3.2 A write to a connected file is supported by three CIO operations:

WRITE

(14B) - order code O.FWRT

WRITER (24B) - order code O,FWRTR
WRITEF (3U4B) - order code O.FWRTR

These operations have the following rules and conventions:

2.3.3 Bk

A WRITE is issued by a FORTRAN formatted WRITE statement,
and by a COBOL WRITE.

A WRITER is issued by a FORTRAN BUFFER-OUT statement.
There is no 1limit on the line 1length for output. Any
write always dumps the entire contents of the user buffer
to the terminal, regardless of any line boundaries (or
partial lines).

WRITER and WRITEF always imply that there 1is an
end-of-line following the last data in the buffer. Hence
the next data following a WRITER or WRITEF is considered
a new line for carriage control purposes.

WRITE does not imply end-of-line unless the last data in
the buffer actually terminates with an end-of-line as
defined for that particular character set. Bence, WRITE
may write many segments of partial lines. :

Because WRITE does not guarantee that only complete lines
are written, writes of partial 1lines from multiple
connected files must not be intermixed.

Data from a user buffer is transferred directly from the
user program to a buffer in the 7/32. When the write
operation has completed, the user buffer has been
emptied; however, the data has not necessarily all been
printed at the user terminal.

Character translation is described in section 2.4.
Carriage controls are associated with OM and AF files as
described in section 2.4.

Delay characters (ASCII null) are automatically inserted
by the 7/32 after it transmits CR, LF, FF, HT, and VT
originating from files of type OM and AF. The number of
delay characters is controlled by the 7/32 command
CDELAY. It is also set by the 7/32 TERMINAL command.

writes to connected files are supported by three CIO

operations:

FWTBL (414B) - order code O.FWTBL
FWBER (420B) - order code O.FWREL
FWBEF (424B) - order code O.FWREL

These operations have the following rules and conventions:

.

A FWTBL will transfer only PRU (100B) blocks from the
user's buffer to the front-end.

6SM No.
Page 4

134.1

. Both FWBER and FWBEF transfer data until the user's
buffer is empty.

. A FWBER transmits an EOR record after flushing the user's
buffer. The level number from the FET is used.

« A FWBEF transmits an EOR level zero (0) after flushing
the wuser's buffer if the operation previous to the FWBEF
was a FWTBL or there was data in the user's buffer (EOF
with data). In any case, an EOF record is transmitted.
This guarantees an EOR before the EOF.

. FWBER and FWBEF imply end-of-line following the last data
. in the buffer., Since FWTBL is PRU oriented, it of course
allows writes of partial lines.

. No translation is done on the data. All data is written
verbatim one character per 7/32 byte into the 7/32
buffer. The character code determines how data is to be
unpacked from CM.

2.4 Character Sets.

There are 4 character sets supported on connected files. The character
set is selected by connecting the file with the appropriate code. The
default is OM (0ld Mistie).

Input: the line is not translated until it is read by a program on the
6500, Data 1is retained in ASCII by the 7/32; it is translated by 1FP
when the data is transferred from the 7/32 to the 6500.

Output: the line is translated by 1FP when it is written to the 7/32.
Translation is pot done on block writes.

2.4.1 OM: 01d Mistic
Character code: 6 bit display code, packed 10/CM word.

End-of-line: 12 - 66 zero bits in rightmost position of a CM
word.

On output, the 6500 will remove all trailing 'blanks back to but
not including the first character on the input line. On input,
trailing blanks are not removed; the input line is translated as
described below. All characters in the 1last CM word past the
last valid character are filled with binary zero. If the input
was an even multiple of 10 characters, an extra word of zero
follows the data.

All OM characters map directly to their ASCII graphic

2.4.2

6SM No. 134.1
Page 5

equivalents, with the exception of the 00B code, which maps to a
blank if imbedded in a CM word (trailins 00B characters indicate
end-of-line).

On 1input, any character with no display code equivalent is
ignored. Otherwise, the character is mapped to its display code
graphic equivalent.

Carriage controls: the lst character of every OM output line is
always interpreted as a carriage control, It is never printed
(this may be overidden by the front end command CCTL). Valid
carriage controls are:

- CR,LF,LF,LF
CR,LF,LF

CR

CR,LF,LF,LF

and , - no action
any other - CR,LF

“w | 4+ O =
[}

The 7/32 will automatically supply the proper number of delay
characters after CR or LF.

Right margin processing is done by the 7/32 for OM output lines.

AF: ASCII Fancy.

This is a full ASCII character set (7 bits, 128 characters) with
the OM conventions for .end-of-line and carriage controls,

Character code: 7 bits, in 12-bit bytes, packed 5 to a CM word.
ASCII null (00) is represented ‘as 4000B, all other codes are the
verbatim 7-bit ASCII code.

End-of-line: 12 -~ 60 =zero bits in the rightmost bits of a CM
word, On output, end-of-line implies that the lst character of
the next line will be a carriage control.

On output, no trailing blanks are stripped.

On 1input, trailing blanks are not removed--the input 1line is
transmitted verbatim. All characters in the 1last CM word past
the last valid character are filled with binary zero. If the
input was an even multiple of 5 characters, an extra word of zero
follows the data.

Translation: the 6500 representation of ASCII null (00) is
4O0OB. All other ASCII codes are the verbatim 7-bit value. Note
that only 7 bits are used. On output, an 8th bit will be
ignored. (If parity is OFF, the parity bit will always be a
zero.) ' :

oOM NO.
Page 6

134.1

2.4.3

2.4.4

Carriage controls: the lst character of every AF line is always
interpreted as a carriage control. It is never printed (this may
be overidden with the front end command CCTL). Valid carriage
controls are:

- CR,LF,LF,LF
CR,LF,LF

- CR

- CR,LF,LF,LF

and , - no action
any other - CR,LF

©“ I+ O =

The user méy generate his own CR and LF with the proper ASCII
characters, The 7/32 will automatically supply the proper number
of delay characters after CR, LF, HT, VT or FF, Note than an
imbedded CR,LF in the output line is not an end-of-line: the next
character is not a carriage control. AF carriage controls are
identical to central batch and SCOPE 3.4. (SCOPE 3.4 interactive
does not support ",".) Right margin processing is done by the
7/32 for AF output lines.

AS: ASCII T7-bit transparent.
This is a 7-bit transparent character set.

Character code: 7-bit ASCII packed into 12-bit bytes, packed 5
per CM word.

End-of-line: 12-60 bits of UY4OOOR in the rightmost bits of a CM
word. On input, the last CM word is padded out with as many
4000B bytes as necessary. If the number of characters is a
multiple of 5, the data will be followed by an entire CM word of
5 bytes of 4000B. On output, the last word should be padded out
with U4000B--these are not sent out to the terminal. End-of-line
on output has no real meaning, since there are no carriage
controls.

Translation: there is no translation., The 6500 representation is
the verbatim 7-bit code. Note that only 7 bits are transmitted
or received, regardless of the contents of the 8th bit.

Carriage controls: there are no carriage controls. The output
data must contain all the proper ASCII control characters for
carriage motion (Ck, LF). The lst character of every line is
always printed. The 7/32 will never insert any delay characters.
Right margin processing is never done.

BI: Binary 8-bit transparent.
This is an 8-bit transparent character set. The only difference

between this character set and AS is that AS is always 7 bits,
while BI is always 8 bits.

6SM No. 134.1
Page 7

Character code: 7 bit ASCII packed into 12-bit types, packed 5
per CM word. '

End-of-line: 12-60 bits of 4000B in the rightmost bits of a CM
word, On input, the 1last CM word is padded out with as many
4000B bytes as necessary. If the number of characters is a
multiple of 5, the data will not be followed by an extra padding
word. This allows 1literal data transmission without spurious
imbedded end-of-line bytes. On output, the 1last word should be
padded out with 4000B--these are not sent out to the terminal.
End-of-line on output has no real meaning, since there are no
carriage controls.

Translation: there is no translation. The 6500 representation is
the verbatim 8-bit code. Note that to receive and transmit 8
valid bits of data, the 7/32 must be in PARITY,NONE mode. If the
7/32 is in even parity (the default) or odd parity, the 8th bit
will always be the parity bit, regardless of the actual value of
the bit sent to or received from the terminal.

Carriage controls: there are no carriage controls. The output
data must contain any characters necessary for desired carriage
motion. The 7/32 inserts no delay characters after the special
ASCII characters CR,LF,HT,VT,FF.

Note: binary mode on the 7/32 (the BINARY command) does not
automatically imply a binary BI type file. The type of file is
determined strictly by the type of connected file reading the
data on the 6500. To transmit pure 8-bit binary data from a
terminal to the 6500, it is necessary to place the terminal in
PARITY,NONE and BINARY mode, and then read the data into a BI
type file on the 6500.

2.5 Special CIO interface for control port jobs.

CP2TT is the CIO routine which builds the stack request for all I/0 on
connected files. This request is built slightly differently for
control-port jobs, than for normal user jobs.

For user jobs (HUSTLER jobs), the character set of a connected file is
always taken from the file FNT entry. The destination port number is
always taken from field C.CPPNBR of the users control point area.

For MANAGER and ARGUS, which use CIO to 1issue stack requests for all
front-end I1/0, this scheme is not practical, since they would
continually have to manipulate the FNT and control point area.
Therefore, for control ports, the following scheme is always followed:

port number - taken from bits 0-11 of word W.FETPT of
the FET.(Q.FETPT,Y.FETPT)
character set - taken from bits 12-17 of word W.FETCCC

6SM No.
Page 8

2.6

134.1

of the FET (Q.FETCCC,Y.FETCC)

Note that this implies that for control ports, field C.CPPNBR (port
number) of the control point area is ignored. Also, field FDCCC
(connected file code) of the FNT is ignored.

Special CIO codes available to control ports.

To facilitate the job done by MANAGER, ARGUS, and the stimulator, which
are the 3 control-port jobs which run on the 6500, 2 special CIO codes
have been defined. These are extensions of the normal read and write
CIO requests on connected files. '

These requests are essentailly control-word read and write operations.
The record read or written is prefixed by a 1 CM word control word,
which conveys various information about that record. Bytes 0-3 of this
control word are identical to the 4 byte control word which prefixes
all records on the 7/32. (bits 0-7 of each byte are valid). Byte U4 of
the control word is unused. The format of this control word is: (see
also FESYM) ‘

12/DHBCT, 12/DHTYPE, 12/DHCHC. 12/DHCTL, 12/unused

DHBCT = character count + 4 (L.DTAHDR)

DHTYPE = record type ((FP.xxx symbols)

DHCHC = CC.FDXXX character code

DHCTL = various control flags

2.6.1 IO.FRDNF - read native. format.

The 4 byte header is a verbatim copy of the header in the 1/32,
execpt that for OM files, the byte count is the number of valid
display code characters written to the 6500 (+4).
DHCHC has no meaning.

DHTYPE will be FP.DATA (data), FP.EOF (EOF), or FP.EOR (EOR)

V.DHCEOL and V.DHCNEW in DHCTL will reflect whether this is a new
line, or a continuation line.

Like all CIO reads by a control port, the record is translated
according to the character set in the FET(FETCCC).

Unlike a normal read or readskip on a connected file, 0.FRDNF
never sends a prompt (unlock) to the 7/32. Also, O.FRDNF will
never receive a "device capacity exceeded" error if the buffer is
smaller than the line.

2.6.2 I0.FWINF - write native format.

This request writes a single line, with control word, to a data

6SM No. 134.1
Page 9

port on the 7/32. The record is translated by 1FP when it is
written.

Bytes DHTYPE, DHCHC, and DHCTL are sent verbatim to the 7/32.

Byte DHBCT is reset by 1FP to be the actual translated character
count, following the normal rules for translation of the record
being written (i.e., the 6500 must supply the proper end-of-line
terminator and padding to ensure that the exact number of desired
character is written.

Translation 1is as defined in the FET (FETCCC). The 6500 program
should ensure that DHChHC matches FETCCC, to avoid potential
confusion by the 7/32. '

DHTYPE should only be FP,DATA (data), FP.UNLK (unlock for a
read), or FP.FEC (front-end command to the 7/32).

Any desired flags in DHCTL may be set.

2.7 Special CIO codes available to console jobs.

The following special CIO codes allow console jobs (including control
ports) to perform special functions involving the 7/32.

2.7.1

2‘7.2

IC.FRDM - read front-end memory.

Memory is read from the 7/32 to the users circular buffer in the
6500. The format is 1 8-bit byte from the 7/32 into 1 12-bit
byte on the 6500, right justified. This request 1is also
available to system programmers from normal HUSTLER jobs.

IO.FWIM - write front-end memory.

Data 1is written from the users circular buffer on the 6500
directly to memory in the 7/32. The format is bits 0-7 of each
6500 12-bit byte 'go to each successive 8-bit 7/32 byte.

For both these requests, the following holds:

1. The first word address of 7/32 memory for the transfer is
in word FET+6 (W.FETRRI) of the FET (bits 0-23). The
address is not divided by 2. The address must be even;
1FP will remove bit 0 from the address.

2. The length of the transfer is determined by the normal
rules of circular I/0.

3. The unused-bit-count may be used to transfer other than a
full CM word of data at the end of the transfer.

y, A read of non-existant memory on the 7/32 will return a

6SM No.
Page 10

134.1

2.7-3

status of EOI. A write to non-existant memory will cause
error code 10B to be returned to the FET if the EP bit is
set, otherwise the job is aborted. 1FP sets the unused
bit count at end-of-memory on both read and write.

5. Valid address ranges may be read from the DST as long as
1FP has been called in at least once (since 1FP set these
fields):

C.DSTFCL = low core LWA+1/2%%15

C.DSTFIF = 1lmbi FWA/2%#¥15
C.DSTFLI = lmbi size/2%¥*15
C.DSTFIF+C.DSTFLI/2%¥15 = LMBI LWA+1

I0.FHL - halt-load the front-end.

Up to 16 bytes of data are read from the user circular buffer and
loaded into the LSU of the T7/32. The data is in the standard
8-in-12 format as described above. Then the 7/32 is halt-loaded
via the 6500 interface. Data is read from the buffer as
described for I0.FWIM, however, there is no 7/32 address in word
FET+6 - only the UBC field is valid.

If the buffer is empty, no data is sent to the interface, but the
halt-load is still done.

The following operation occurs on an IO.FHL:

1. The 7/32 system clear signal is brought up for 1/2 to 2
seconds, This 1is a master-clear to all the 7/32 1I/0
devices.

2. The 7/32 reads up data from its device 5, which is the

interface RAM (LSU) which has been loaded with data from
the circular buffer on the 6500. The 16 bytes are used
as follows: (all bytes not supplied by the user are
zeroed.)

bytes 0 - 1 are 1loaded into bits 16-31 of the Program
Status word. .

bytes 2 - 3 are loaded into bits 48-63 of the PSW

(the 1location counter). Bits 0-15 and 32-47 are set to
zero., .

bytes 4 - 5 become the FWA of the load.

bytes 6 - 7 become the LWA of the load.

bytes 8 - 15 are loaded into 7/32 core, starting at FWA.

The ram is read circularly until LWA is reached,
duplicating bytes 0 - 15.

6SM No. 134.1
Page 11

The halt-load operation is identical to pressine the INI button
on the 7/32 console, except that O.FHL loads the RAM but the INI
button does not.

2.8 The stack request.
A special format of the standard 1SP stack request is used for requests
for communicating with 1FP. This request replaces the disk position

information with front-end information. The first word of the request
is: !

12/FEPT,12/FSTA,1/,1/FEC,1/,1/RES,1/NTA,1/PRMT,6/CCC,1/;1/EE,4/LEV,6/OC,

6/CP,1/FER,5/
FEPT = front-end port number
FSTA = FST address

FEC = 1 for front-end command. On O.FWRT, O.FWRTR, and O.FWRP, this
causes the record written to the 7/32 to be type FP.FEC, rather
than FP.DATA.
1 for restricted access (not implemented)
1 for non-throw-away. On user abort on O.FWRT and O.FWR, tthis
causes flag V.DCHNTA to be set in the record written to the 7/32.
PRMT =1 to send prompt character (¥*).
On O.FREAD and O. FRDSK, this causes 1FP to send an ¥ as a prompt
character when it writes on unlock to 7/32 to request input data.
CCC = connected character code (CC.XXXXX).
This determines the translation done by 1FP on all requests exept
O.FRDM, O,FWTM, and O.FHL. Also, for O.FwWRT, O.FWRTR, and
O.FWRP, CCC is set into byte B.DHCHC of the record sent to the
7/32.
EP = 1 for error processing
LEV = EOR level number
0C = order code
FER = 1 (front-end request flag)

o)

m

[7]
nn

The second word of the request 1is the same as the standard 1SP disk
request format.

Valid stack request fields based on the order code:

O.FREAD FEPT, FSTA, PPMT, CCC
0.FRDSK FEPT, FSTA, PPMT, CCC
O.FWRT FEPT, FSTA, FEC, NTA, CCC
O.FWRTR FEPT, FSTA, FEC, NTA, CCC
O.FRDM NONE

0.FWTM NONE

O.FHL NONE

O.FWRP FEPT, FSTA, FEC, NIA, CCC
O .FRDNF FEPT, FSTA, CCC

O .FWINF FEPT, FSTA, CCC

O.FWTBL FEPT,FSTA,CCC

O.FWRBL FEPT,FSTA,CCC,LEV

0C, FER, and EP are valid on all requests,

6SM No. 134.1

Page 12

2.9

PPU writes to the 7/32.

Any PPU may write data to a port on the 7/32 using the O.FWRP stack
request. There are certain rules associated with this request:

1. Only 1 line of data may be written, 1FP always sets the new line
(V.DHCNEW) and end-of-line (V.DHCEOL) flags in the record. The
transfer stops at the LWA indicated by the request. For OM, any
imbedded EOL's are converted to blanks,

2. The record will be a front-end command if FEC is set in the
request.

3. The NTA flag will be set if NTA is set in the stack request.

4, 1FP always translates the record based on CCC in the stack
request.

5e The PPU must set FEPT for the port to which it wants to send the
data.

6. An FST is optional, as indicated by the appropriate flags in the
2ND word of the stack request.

T. If there is no room for the data in the 7/32 the request is
rejected by setting the code/status in the PPU communications
word to complete and error code 10B. The PPU is responsible for
reissuing the request, swapping the job, etc. 1FP never
initiates a swapout on O.FWRP.

Stack request error processing.

Connected I/0 errors are handled through the regular CPSP/1SY
mechanism, That is, 1FP sets the BX bit in the stack request, which
tells CPSP the request is complete. 1FP puts an internal error code in
the stack request code-status field, but does not set the complete bit.
This tells CPSP to do error processing. CPSP interprets the error
code, and sets the FET and FNT complete with the correct external error
code.

3.0 System Programming Considerations

3.1

Installation History.

Modifications to CPSP (RFBSPFE), described in Section 4.5, were
installed in LSD 45.09.

Installed in LSD 45,17 were:

ident routine

6SM No. 134.1
Page 13

RFBMTRFE MTR
RFB CPCIO
CP2TT
1FP :
Block transfer support code was added by IDENT DMKPRT1FP in LSD 48.05

3.2 Assembly Options.
None
3.3 Cautions
None
3.4 DST usage by 1FP.
| Stack requests are 1linked onto the DST for 1FP in the same manner as

for disks. However, certain fields have a different meaning, as
diagrammed below.

DST Word 2:

59 48 47 6 . 24 12 11
UNUSED C.DSTFCL | c.psTFIF | C.DSTFLI | C.psTiFP

C.DSTFCL = 7/32 Low Core size in bytes, divided by 21>
C.DSTFIF = 7/32 MBI FWA, divided by 2%°
C.DSTFLI = 7/32 IMBI size in bytes, divided by 2

. if 1FP is active on this DST entry.
C.DSTLFP = %Set MTR, cleared by 1FP)

15

4,0 Internal Reference Specifications

4.1 _Flow of control for a read from a connected file:
1. User Job issues a CIO RA+1 request on a connected file.

2. CPCIO begins processing of the call. This 1involves buffer
pointer validation and preliminary FNT changes. CPCIO then
determines that the request is on a connected file (device
type=61B) and inititates CP2TT.

6SM NO. 134.1
Page 14

3. CP2TT wuses information from the FET, the "FNT, and the control
point area for the job, and constructs a stack request describing
the input operation. The request is built in the local TDB (task
descriptor block) for CP2TT. CP2TT then passes this request to
CPSP by linking it onto the CPSP request chain.

y, CPSP is initiated by MTR. When CPSP processes the stack request,
it expands it to an 8 word format, moves it to the request stack
area, and links it onto the stack request chain for the front-end
DST entry (for device FD).

5. If 1FP is not already resident in a PPU, MTR initiates 1FP.

6. 1FP picks up the request from the DST chain. It moves to the
control point of the job issuing the request.

7. 1FP checks the port on the 7/32 associated with the request, If
there 1is no data in the port, 1FP writes an UNLOCK (with an
optional prompt character of * if prompt is on) to the output
side of the port, and sends a HEREIS command to the 7/32. Then
the Job is swapped out in WT.IN state. (If the UNLOCK could not
be written, the Jjob swaps out in WT.OUT state). 1FP places the
reconstructed CIO request in the delay stack of the job. This
will cause the original request to be reissued when the job is
started up again.

8. When the user enters data, the 7/32 will send an INBS protocol.

: record to the manager control port on the 6500. Manager will see
the INBS, and since the Jjob is swapped out in WT.IN state,
MANAGER will call MAN to free the job.

9. The Job will swap in and the CIO read requeét is reissued,
retracing steps 1-6 exactly.

10. If there is data in the port on the 7/32, 1FP reads that data
directly from the 7/32. It then translates it into the
appropriate character set, and writes the data to the circular
buffer on the 6500, updating the FET pointers.

11. The stack request is returned to CPSP, indicating successful
completion.

12. CPSP sets the FET and FNT complete. If the job was 1in auto
recall, it is restarted.

4.2 Flow of control for a write to a connected file:
1-6. Identical to read above,'

7. 1FP checks the port on the 7/32 to see if there is room for a
line of data.)

4.3

4.4

6SM No. 134.1
Page 15

8. If there is no room, 1FP swaps the job out in WT.OUT state. The
original CIO request is placed in the delay stack for the job,
The request will be reissued when the job restarts.

9. When the entire output stack on the 7/32 is empty, the 7/32 will
send an FP.0TBS protocol record to the MANAGER control port on
the 6500, MANAGER will see the OTBS, and since the Jjob is in
WT.OUT state, MANAGER will call MAN to free up the job,

10. The Job swaps in, and the CIO request is reissued. Steps 1-7
above are repeated exactly.

11. If there 1is room for a 1line of data, 1FP reads data from the
circular buffer on the 6500, and translates it to ASCII. 1FP
stops at logical end-of-line, end-of-buffer, or 240 characters,
whichever comes first.

12. The translated data is written directly to the next buffer on the
7/32 (a small buffer if the data is 80 characters or less,
otherwise a large buffer).

13. 1FP sends a HEREIS command to the 7/32, informing it that a -new
buffer of data is available. The 7/32 adds the buffer to the
port output circular list.

14, If there is more data in the user buffer on the 6500, 1FP goes
back to step 11, Otherwise, 1FP passes the stack request back to
CPSP, indicating that it is complete.

15. CPSP sets the FET and FNT complete, and restarts the job if it
was in AUTORECALL.

CceCIO

CPCIO processes I/0 requests that were made by CPU programs storing a
CIO call in RA+1. CPCIO gathers general information and does
preliminary validity checking on it. CPCIO is fully described in 6SM
121,

CPCIO selects a driver based on the file type. For connected files
(device type=61B), CPCIO sets up a TDB and initiates task CP2TT.

CP2TT

CP2TT processes all CIO requests on connected files. It translates the
CIO0O request into a stack request for 1FP, and issues that request
through CPSP.

4,4,1 CP2TT is entered by CPCIO to process any I/0 code on a connected
file.

6SM No. 134.1
Page 16

Code

10

20

14

24

34
414

k20

Action

READ - restricted to interactive BUSTLER Jjobs and
control ports. A stack request for order code
O.FREAD is formed and issued to CPSP. The following
fields are set:

STPORT - port number, For HUSTLER jobs, taken from
word W.CPPORT of the control point area. For
non-HUSTLER jobs, taken from word W.FETPT of the
FET.

STCCC - character code. For HUSTLER jobs, taken
from field FDCCC of the FNT. For non-HUSTLER jobs,
taken from word W.FETCC of the FET.

STPRMT - prompt flag. For HUSTLER jobs only, taken
from Q.PROMPT in the control point area.

READSKIP - restricted to interactive HUSTLER jobs
and control ports. A stack request for order code
O.FRDSKP is formed and issued to CPSP. Fields are

-set as for READ.

WRITE - restricted to interactive HUSTLER jobs or to
a control port., A stack request for order code
O.FWRT is formed and issued to CPSP. The following
fields are set:

STPORT - as for READ,
STCCC - as for READ.

WRITER - restricted to interactive HUSTLER jobs or
to a control port. A =stack request for order code
O.FWRTR is formed and issued to CPSP., Fields are
set as for WRITE.

WRITEF - identical to WRITER.

FWTBL (write block) - restricted to console Jjobs. A
stack request for order code O.FWTBL is formed and
issued to CPSP. The following fields are set:

STFEPT - as for read
STCCC - as for read

FWBER (writer block) - restricted to console Jjobs.
A stack request for order code O.FWRBL is formed and
issued to CPSP. The following fields are set:

420

4oy

430

434

uhy

450

454

6SM No. 134.1
Page 17

STFEPT - as for read
STCCC - as for read

FWBER (writer block) - restricted to console jobs.
A stack request for order code O.FWRBL is formed and
issued to CPSP. The following fields are set:

STFEPT - as for read
STCCC -~ as for read
STLEV - taken from W. FETLVL of the FET.

FWBEF (writef block) - restricted to console jobs.
A stack request for order code O.FWRBL is formed and
issued to CPSP. The following fields are set:

STFEPT - as for read

STCCC - as for read

STLEV - level number. Set to zero if an EOR is
needed before the EOF, else it is set to 17B
(EOF) .

STFEOF - write an EOF after an EOR. This flag is
set if an EOR is needed before the EOF. If set,
1FP will write a level 17B EOR (EOF) immediately
after the EOR being written.

FRDM (read front-end memory) - restricted to console
Jjobs and system programmers. A stack request for
order code O.FRDM is formed and issued to CPSP.
STPORT, STCC, and STPRMT are not set.

FWTM (write to front-end memory) - restricted to
console jobs., A stack request for order code O.FWIM
is formed and issued to CPSP.

FHL (halt 1load the front-end) - restricted to
console jobs. A stack request for order code O.FHL
is formed and issued to CPSP.

FRDNF (read native format) - restricted to console
Jobs., A stack request for order code O.FRDNF is
formed and issued to CPSP. The following fields are
set:

' STPORT - port number, from word W.FETPT of FET.

STCCC - character code, from word W.FETCC of FET.

FWTNF (write native format) - restricted to console
Jjobs. A stack request for order code O.FWINF 1is
formed and issued to CPSP. Fields are set as for
O.FRDNF.

All other I0 codes are ignored. The FET/FNT are set
complete, and no error status is returned.

4.4,2 CP2TT expects the following fields in the TDB to be set by CPCIO:

6SM No. 134.1
Page 18

CS (code/status)

D.FA (FNT address)

LENGTH (FET length)

FETA (FET address)

CPNUM (control point number)
FIRST (FET first)

LIMIT (FET limit)

CP2TT uses the following additional fields in the TDB:

SCR1 (holds the IOTAB entry for the CIO code)
STK1 (holds lst word of stack request)
STK2 (holds 2nd word of stack request]

4.4.3 CP2TT stack request setup.

CP2TT sets up the stack request as follows:

FEPT

FSTA
FEC
RES
NTA

PRMPT

ccc

EP

set for I0.READ, IO.RDSKP, IO.WRITE, IO.WRITF, IO.FRDNF,
IO.FWINF, IO.FWTBL, IO.FWBER, IO.FWBEF.

For HUSTLER Jobs, set from word W.CPPNBR in the control
point area.

For non-HUSTLER jobs, from word W.FETPT in the FET.

passed to it by CPCIO in the TDB.
never set
never set
never set

on IO.READ, IO.RDSKP, set if a HUSTLER job, and prompt
is on (W.PROMPT in the control point area) .

set on IO.READ, IO.RDSKP, IO.WRITE, IO.WRITR, IO.WRITEF,
I0.FRDNF, IO.FWTINF, I0.FWTBL, IO.FWBER, IO.FWBEF.

For HUSTLER Jjobs, set from field FDCCC in the FNT.

For non-HUSTLER jobs, set from field FETCCC in the FET.

set from the EP bit in the FET.
set based on the CIO code:
JO.READ - O.FREAD

JO.RDSKP - O.FRDSK

IO.WRITE -~ O.FWRT
IO.WRITR - O.FWRTR

IO.WRITF - O.FWRTR
IO.FRDM - O,FRDM
IO.FWIM - O.FWTM

IO.FRDNF - O.FRDNF

“ouou

4.4.5

4.4,6

6SM No. 134.1
Page 19

JO.FWTNF - O,.FWINF

JO.FWTBL - O.FWTBEL

JO.FWBER - O.FWRBL

IO.FWBEF -~ O.FWRBL
FETA FET address as passed by CPCIO
FIR FIRST from the FET W.FETFRS field
LIM LIMIT from the FET W.FETLIM field

LEV level from the FET FETLVL field
(I0.FWBER, IO.FWBEF)

FNT/FET field specifications:

The only relevant field in the FNT is FDCCC (character code) for
I0 codes 10, 14, 20, 24, 34, 414, 420, 424, for HUSTLER jobs.

FET fields are only relevant for IO codes 10, 14, 20, 24, 34,
414, 420, 424, U450 and US54 for control ports. The fields are:
FETCCC (character code) and FETPT (port number).

Note that other fields do have relevance for CPCIO, CPSP, and
1FP,

Error Aborts

If an error is detected, 6DM is called (via 1I0) to dayfile a
message to the user., The FET/FNT is then completed with the
error bits (FCSERR = 9-13 of FET word 0) = 22B. If the error
processing bit is clear, the job is aborted. This 1is fully
described in Section 2.8 of 6SM 121.

CP2TT is a very simple and straightforward routine.

CP2TT is a main loop which calls a set of subroutines. All
subroutines return to their caller. (In general, X3 indicates an
error code on return.) The main flow of CP2TT is:

1. Chegk the CIO code for a valid CP2TT operation.

2. Verify that the requestor is allowed to make this request.

3. Insert the port number into the stack request.

4, 1Insert the charaeter set into the stack request.

5. Process any input timeout condition.

6. Set the prompt flag in the stack request.

6SM No. 134.1

Page 20

hoy.7

4.4.8

7. Process EOR requests.

8. Issue the stack request to CPSP.

CP2TT Organization.

The CP2TT main loop controls the flow through CP2TT. The major
subroutines are described below.

INST

PORT

CHARSET

‘INPTO

PROMPT

ISSUE

COMPLET

PROCEOR

IOTAB

Checks that the CIO code is for a wvalid CP2TT
operation, and that the requestor is allowed to make
the request. Sets up a skeleton stack request.

Sets the front-end port number into the stack request.
The port number is picked up from the control point
area or the FET,

Sets the connected file type into the stack request
from the FNT or the FET.

For a read request when the "input timeout" flag is set
(Q.CPINTO) in the control point area, returns a
carriage return (null 1line) to the Job. Manager
signals an input timeout by setting bit Q.CPINTO in the
Job control point area, and restarting the job.

For a read request, sets the prompt flag in the stack
request if the prompt flag (Q.PROMPT) is set in the
control point area.

Completes the stack request by inserting the order
code, FST and FET addresses, and the control point
number, Subroutine ESTK2 is called to actually pass
the request to CPSP.

Sets the FET and FNT complete for any request which
does not require a stack request.

sets the STLEV and STFEQF flags 1in the stack request.
If the I/0 code requires a level number, the level
number is extracted from the FET and inserted into the
stack request. If the I/0 code is an EOF, the level
number ‘is set to 17B if the last operation was a
writer; otherwise the 1level number is set to zero and
the STFEOF flag is set to tell 1FP to write an EOF
after the EOR0O.

CP2TT is driven by the IOTAB table. For each CIO code which

causes

an action on a connected file, there is an IOTAB entry

which specifies the stack request order code, and various CP2TT

4,5 CPSP
CPSP
CPSP
order
made.

4,5.1

u0502

6SM No. 134.1
Page 21

processing options. All additional I/0 codes and options should
be added using this table.

is the CPU stack processor., It 1is fully described in 6SM 122.
was originally designed to support only the disk driver 1SP. In
to support the front-end driver, 1FP, several modifications were

Front-end Request

All requests for I/0 on connected files are issued either as CIO
requests (from CPU programs) or as stack requests (from PPU
programs) . All CI0O requests are processed by CPCIO, and thence
by CP2TT. If CP2TT determines that I1/0 is required on a file, it
issues a stack request to CPSP.

CPSP processes front-end requests similarly to disk requests,
However, because there are no RBTS involved, the processing is
greatly simplified. Front-end requests follow the same flow
through CPSP as disk requests, avoiding all code which
manipulates RBRS/RBTS. The overflow) flow is:

1. CPSI picks up a new request and calls COPYSR to move the
request to an 8-word slot.

2. COPYSR checks the request order code. If it is a front-end
request it ensures that bit Q.STFER is set and kills the
system if it is not. .

3. ISR calls CFET and CFNT to copy relevant fields from the FNT
and FET, followed by ESR.

4., FER performs special processing only for front-end requests.
Currently this is setting bit Q.STBPT in the request for
order code Q.FWRR (PPU write).

5. ESR enters the stack request into the proper DST. For
front-end requests, it simply calls FEDST to return the
proper DST ordinal. It then links the request into that DST.

6. FEDST is a routine to simply scan the DST for a front-end
device which is on in the EST.

7. 1FP picks up the request from the DST chain, and processes
it. It then returns the request to CPSP via the CE.SRX ICE
request.

8. CPSP completes the request in the normal fashion.

The following routines do special processing for front-end

6SM No. 134.1

Page 22

4.6

4,5.3

FP

4.6.1

requests:

CFNT Only the FST address and code/status are copied to the
stack request. All references to disk pointers are
skipped.

CMPLT When reconstructing the FNT, all disk pointer fields are
skipped.

COPYSR For non-front-end requests, flag Q.STFER is cleared. For
front-end requests, flag Q.STFER must be set,

POST All analysis of the DST map is skipped.

ESR FEDST is called to find the DST for the front-end. All
code for RBRS is skipped.

ISR FER and ESR are called directly for front-end requests.
Special Notes.

1. Throughout CPSP, bit Q.STFER in the stack request is used to
key special processing for front-end stack requests.
Subroutine COPYSR ensures that this bit is set correctly.

2. The ORDTAB table in ISR, which has one entry for each order
code, tells COPISR whether the particular order code is valid
for the front-end. Any new front-end order code must be
added to this table with the FER parameter.

3. Subroutine ESR, which links any front-end stack request onto
the FD DST, assumes that MTR will start 1FP to process the
request, CPSP never calls 1FP directly.

Overview

1FP is the PPU routine responsible for all I1I/0 between a 6000
mainframe and a 7/32 front-end. 1FP has unlimited access to all
of 7/32 memory. I/0 1is done by transferring "lines" of data
between 6000 CM (or PPU memory) and buffers in the 7/32's LMBI,
or common memory.

Control of data flow is managed in the 6000 by stack requests and
control ports. In the 7/32, 1FP talks to control port, data
ports, and the FPCOM area, through which 1FP talks directly to
FREND.

1IFP is called by the 6000 monitor whenever there is a stack
request for the front-end. Once called, 1FP will execute in the
same PPU until MANAGER's control port is closed and there are no

u0602

6SM No. 134.1
Page 23

remaining stack requests. 1FP is therefore a dedicated PP to
MANAGER--but MANAGER cannot call 1FP directly; it must open its
control port and then make an I/0 request on a connected file.

What 1FP does can be seen readily in the main loop, located at
about address 1000 in the PPU (MAINLOOP). This is the flow:

1. See if FREND is alive and well,

2. Service MANAGER's Control Port, moving as many 1lines as
possible in both directions; set the Control Port complete if
FREND is dead.

3. Service the ARGUS and STIMULATOR Control Ports. Set them
complete if FREND is dead or if MANAGER's Control Port is not

open.

4, Process stack requests for up to 1/4 second or until none
remain.

5. If stack requests remain or there is at least one Control
Port open, go to 1.

6. Drop out until called again for stack request activity.

As well as doing 1/0, 1FP is MANAGER's watchdog on FREND. FREND
clears a flag in the FPCOM area (H.FEDEAD) at regular intervals.
1FP sets this flag (after checking its value) on every main loop
pass, 1FP kills the 7/32 if H.FEDEAD stays set for too long. 1In
addition, there is a flag in FPCOM that FREND can set to tell 1FP
it has crashed. This allows 1FP to stop immediately when the
7/32 crashes.

In a crash, 1FP dumps itself into the 7/32, in a low-core buffer
reserved for the purpose. 1FP then sets MANAGER's Control Port
complete, which causes MANAGER to die and be dumped.

7/32 Interface 1I/0 Subroutines

I/0 to the T7/32 interface (6000 Channel Adapter, or 6CA) is
uncomplicated. There are three operations that 1FP does
routinely; these are Read, Write, and Test-set. 1In each, the PP
must send functions to set the address register in the 6CA and
initiate the operation, then transfer data over the channel.
Read and Write simply access 7/32 memory at the specified
address. Test-set is a special case of Read, in which one
halfword (16 bits) is read, and the top bit of the halfword is
set in the same memory cycle. The PP receives the previous value
of the halfword. Except for dumping, data is always transferred
8-bits-in-12, one PP word for each 7/32 byte.

These three operations are done by the subroutines READT732,

6SM No.
Page 24

134.1

4.6.3

WRIT732, and TEST732. Each of these routines has, as entry
parameters, a 7/32 address, an offset to be added to the address,
a byte count, and a PP buffer address, assumes FREND is dead.
1FP will then - process only loading and dumping (TEST732 always
reads 2 bytes, and returns the result in A, so it does not use
the byte count or PP address.)

As an example, here is a typical sequence of PP instructions to
read the 32-bit word W.PTIN from a data port:

SETK PORTFWA,FEADLOC POINTER TO 7/32 ADDRESS
SETK ~ PTIN,FEDATA PP BUFFER ADDRESS IS PTIN
SETK 4,FEBYTES NUMBER OF BYTES TO READ
CALLK READ732,W.PTIN READ TO PTIN

EXITIF MI 7/32 HARDWARE ERROR

The address at PORTFWA occupies three PP words:

VFD 8/0,4/bits 20-17 of fwa
VFD 4/0,8/bits 16-9 of fwa
VFD 4/0,8/bits 8-1 of fwa

Since the 6CA accesses 7/32 memory in 16-bit words, the address
is effectively divided by 2 before it is sent to the 7/32. In
1FP, this is known as "6CA address format." This format 1is
chosen because the address is sent to the 7/32 this way-~in 3
functions, each containing a byte of the address. The last
function also specifies the operation.

All 7/32 hardware driver subroutines exit with A=-1 if there is a
hardware error. Any routine which calls a hardware driver
subroutine, either directly or indirectly, must check the &
register upon return--either to exit with A still negative, or to
do some kind of error processing.

JFP/FREND Handshaking

1FP manipulates tables and buffers in the 7/32's memory, and it
relies on FREND to describe these correctly. 1FP could be badly
fooled if a malfunctioning FREND gave the wrong addresses for
buffers or Port tables. For this reason, 1FP must be sure to
start with that a good FREND program is running, and it must
recheck this continually. This is implemented in the following
way:

1. Whenever MANAGER initializes, it reloads the 7/32, and waits
for it to initialize before opening its Control Port.

2, During initialization, 1FP checks to make sure MANAGER exists
and has a Control Port open. If this is not the case, 1FP
reads no addresses from the 7/32, and will do only loading
and dumping (O.FRDM, O.FWTM, O.FHL) Stack requests, 1FP will

u.6.u

6.

6SM No. 134.1
Page 25

then drop out after completing all stack requests, because
MANAGER's Control Port is not open.

When, during initialization, 1FP finds MANAGER's Control Port
open, it assumes FREND has been loaded. 1FP then waits (for
up to 1 second) for H,FEDEAD to clear. This tells 1FP that

FREND is loaded and runnine.

During initialization, after 1FP has determined that FREND is
running, 1FP reads the base addresses of the FPCOM area and
the Port table. These addresses are never re-read, since
they are never supposed to change.

After initialization, 1FP reads buffer addresses from FPCOM
and the Ports. Every buffer address is checked to make sure
it is a valid LMBI address, before it is used.

At least every 1/4 second, 1FP (subroutine FESTAT) test-sets
the H.FEDEAD flag, which FREND must clear at least twice a
second. If this flag remains set for one second, 1FP kills
the 7/32 by halt-loading it. This stops FREND. 1FP then
reloads itself, and during initialization it will determine
that FREND is dead.

Subroutine FESTAT also monitors H.INICMP in the LMBI. This
is the flag that FREND sets to tell MANAGER that
initialization is complete, FREND also can put a code in
this cell to tell 1FP it has crashed. In this way, 1FP can
stop immediately if FREND dies other than by hanging,

The moment MANAGER's Control Port becomes complete, for any
reason, 1FP assumes FREND is dead. 1FP will then process
only 1loading and dumping Stack requests, and assume nothing
about any LMBI tables. The same is true if MANAGER's error
flag is set, or if there is no MANAGER.

Any time 1FP detects any kind of a problem with FREND, it
kills the 7/32 (subroutine KILLER) by halt- loading it into a
wait state (unless FREND has crashed), then dumps the PP
memory into the 7/32 in the high end of low core. 1FP then
reloads itself before setting the 6000 Control Ports
complete.

Ports and How 1FP Uses Them

Port Table

(For a complete description of Ports; see FREND 6SM No. 124.)

The 7/32 has one Port in its common memory for each connection to
the 6500. The Port fields used by 1FP are:

6SM No. 1341

Page 26

H.PTCN1

H.PTWTBF

W.PTIN

H.PTINIK

H.PTOTIK

H.PTOTNE

H.PTNDIK

H.PTNDDT

4.6.5 FPCOM

First connection number. 1FP checks this field to see
if a data port is connected. If it is not, reads from
the Port receive end-of-file, and writes are
completely satisfied without transferring anything to
the Port. This allows 6500 programs to complete while
a user is being disconnected.

This halfword is a flag: 1FP sets the top bit
whenever it causes a Job to swap out waiting for
output because the 7/32 had insufficient buffers
available. This flag tells the 7/32 that it must send
manager an output buffer status message when buffers
become available, so the Job can be swapped back in.

Input buffer address. This is the address of the next
line of input from a Port, supplied by the 7/32
continuously. If 1FP sees this field zero, it means
the connection has no input data. This address is
divided by 2 (by the 7/32) for ease in addressing the
interface to read the data.

Input buffer address interlock. 1FP sets the top bit
of this halfword to tell the 7/32 it is in the process
of reading the input 1line. After the 1line is read,
1FP sends an ITOOK command to the 7/32, which then
clears H.PTINIK, and supplies another input buffer
address when available,

Output buffer address interlock. 1FP sets the top bit
of this halfword when it is writing data to the 7/32.
After the data is written, 1FP sends a HEREIS command
to the 7/32, which causes the 7/32 to take the buffer
and clear the interlock.

The number of empty output "slots" in the Port. This
is the number of output lines that 1FP may write at
any time, If this field becomes zero during a 1FP
write operation, 1FP swaps the Jjob out, WT.OUT.

The need-data interlock. Interlocks H.PTNDDT
(J.PTOTBS and J.PTXFER). This interlock is held by
1FP whenever these fields are to be modified,

The need-data bits, 1FP clears J.PTOTBS and sets
J.PTXFER when beginning a write or rewrite request,
and then clears J.PTXFER at the end of the request.
The PTOTBS bit says that a request for data has been
initiated by FREND. The PTXFER bit says that a data
transfer is active on the port.

1FP - 7/32 communication area

u.6.6

FPCOM
H.FCMDIK

W.FCMD

W.NBF80
W.NBF240

H.NBUFIK

H.NOBUF

6SM No. 134.1
Page 27

is a table in the 7/32 which is used for general
communications. The following fields pertain to Port
processing:

1FP command interlock. 1FP sets the top bit of this
halfword before writing a command into FPCOM. When
the command is processed, the 7/32 clears it.

1FP command. The first halfword of this word holds
the 1FP command code; the second holds a port number.
1FP sends a command by setting the interlock, writing
this word, then interrupting the 7/32.

There are currently 2 1FP commands: ITOOK, which tells
the 7/32 an input line has been taken, and HEREIS,
which gives the 7/32 an output line.

HEREIS comes in two types: FC.HI80, and FC.HI240. The
difference indicates which size buffer 1FP used for
the output data.

These words contain the addresses of a free

80~ and 240-character buffer, respectively. The 7/32
keeps these words filled, renewing them on each HEREIS
command from 1FP. '

Next-buffer address interlock. When the top bit of
this halfword is clear, the address in W.NBUF is
valid. 1FP sets this bit before using the buffer, and
the 7/32 clears it when it puts a new address in
W.NBUF.

7/32 short on buffers. The 7/32 sets this halfword
nonzero when the number of free buffers in its buffer
list drops below a certain threshold. Before starting
on an output stack request, 1FP checks this flag. If
it is non-zero, 1FP behaves as if the Port were fulil,
and swaps the job out, WT.OUT. 1FP also sets H.PTWTBF
in the Port. When the 7/32 regains its composure, it
clears H.NOBUF, then searches the ports for any that
1FP swapped jobs out for, The 7/32 then sends output
buffer status messages (FP.OTBS) to manager for these
ports, in case the jobs should .be swapped back in.

General 1FP/732 protocol

Almost all

1FP/732 1interchange is based on the FPCOM table.

There are two basic sequences:

1. Read (1FP reads data from 7/32)
2. Write (1FP writes data to the 7/32)

6SM No.
Page 28

134.1

4,6.7

4.6.8

Read:

On a read, the 7/32 places the address of a buffer containing
data, into word W.PTIN of the associated data port. When 1FP
sees this word non-zero, it requests the PTINIK interlock, which
tells the 7/32 that it is wusing this word. It then reads the
data from the buffer., When it is done, it sends an ITOOK command
to the 7/32, specifying the Port number. The 7/32 then releases
the buffer pointed to by W.PTIN, and attempts to refill the PTIN
word from the circular input 1list of the Port. The last thing
the 7/32 does is release the PTINIK interlock, which tells 1FP
that he can look at W.PTIN again.

Write:

On a write, 1FP first interlocks the output side of the Port by
getting the PTOTIK interlock. 1FP then checks H.PTOTNE, which is
the count of avalable cells on the output circular stack. If
non-zero, 1FP gets a 7/32 buffer by reading a buffer address from
W.NBF80 or W.NBF240, depending on how big a buffer it needs. It
then writes data to this buffer. Finally, . it sends a HEREIS
command to the 7/32 specifying the Port number. This tells the
7/32 to refill NBUF with a new buffer, and to move the old
address to the Port circular output stack., H.PTOTIK is then
released by the 7/32.

Interlocks

There are 5 interlocks, all set by 1FP and cleared by the 7/32.
These interlocks all have the same meaning:

1FP 1is altering or has altered the fields, and the only 7/32
routine which may process these fields is the 6500 ISR.

Thus, 1FP will not process a field until it can get the
interlock, and the 7/32 ensures that all such interlocks have

been set.

Interlocks:

PTINIK Port input interlock. Interlocks W.PTIN

PTOTIK Port output interlock. Interlocks W.PTOINE
PTNDIK Need-data interlock. Interlocks H.PTNDDT.
NBUFIK FPCOM next buffer interlock. Interlocks W.NBF80

and W.NBF240.
FCMDIK FPCOM command interlock. Interlocks W.FPCMD

Commands
1FP can send 2 commands to the 7/32:

1. ITOOK -~ 1FP read a buffer full of data

6SM No. 134.1
Page 29

2. HEREIS - 1FP wrote a buffer full of data
HEREIS comes in two types: FC.HI80 and FC.HI2U0,
depending on which buffer size 1FP used.

All commands consist of the command ordinal, and the Port number
to which the command applies.

1FP will set the FCMDIK interlock before writing a command to
W.FPCMD. This interlock is cleared by the 7/32 only when it has
finished the command, and is ready for another one. Interlock
clear means ready for command.

Buffers:

W.NBF80 and W.NBF240 in FPCOM contain the addresses of an 80
character and a 240 character buffer, respectively, which 1FP may
write into. 1FP always sets the NBUFIK interlock before using
these buffer addresses. The 7/32 refills the buffer address used
by 1FP, and clears the interlock when 1FP sends a HEREIS command.
Whenever H.NBUFIK is clear, the buffer addresses are valid.

4,6.9 Interlock Management

Because of the 1FP =~ 7/32 interlock scheme, there is obviously
great potential for 1FP to finish an operation without releasing
all the interlocks it owns., For this reason, there is a direct
cell called NILS, which always contains the number of interlocks
that 1FP owns.

NILS is incremented only by subroutine GETIL, which is the only
place interlocks are gotten. NILS is decremented by DROPIL, by
FECMD, and by those subroutines which call FECMD, since a command
will release more than 1 interlock.

At the end of processing a control Port or stack request, NILS is
checked to make sure it is zero, and 1FP kills the front-end
system 1if it is not. The only exception to this is in the
presence of hardware errors, in which case there may have been a
hardware error while attempting to reserve an interlock, and the
number of interlocks 1FP holds is not known.

4,6.10 Port processing subroutines:

This is a brief description of what the routines in this section
do.

CKPORT Checks the Port for connected and enabled. Also this
routine computes the Port address from its number.
This is particularly important-- this routine must be
called before starting an operation on a Port.

b5M No.
Page 30

134.1

TFL732

GETIL

DROPIL

GETOBUF

SPORTI

SPORTO

WRTPORT

RDPREC

DOITOOK

FECMD

CKBUF

This routine performs validity checking on addresses
in the 7/32. It should be used on any addresses that
aren't assembled into 1FP, since a reference to an
invalid 7/32 address will appear as a hardware error,

This is a general purpose routine, used to get hold of
all 7/32 interlocks. It test-sets the interlock until
it is found free, and kills the 7/32 if it has to wait
too long.

Performs the reverse functin to GETIL, by writing 1
byte to the 7/32.

Get output buffer address. This routine reserves the
interlock H.NBUFIK, and reads the address of a free
buffer from the 7/32. It also reads the first word of
the buffer, to make sure it is a free buffer. The
buffer size gotten is based on the data length to be
written (RECORD+C.DHBCT).

Sense Port input status. This routine obtains the
interlock H.PTINIK, and reads the address of the input
buffer, if any. On exit, it tells whether or not
input is available.

Sense Port output status. This routine gets the
interlock H.PTOTIK, and checks the number of free
output slots, H.PTOTINE. On exit, it indicates how
many lines (if any) may be written to the Port.

This routine writes a data record to a Port. It gets
a buffer, writes the data to it, sends the HEREIS
command (FC.HI80 or FC.HI2U0) to the 7/32.

Read a record from a Port. This routine assumes that
SPORTI has been called. It reads the data buffer.

Sends an ITOOK command to the 7/32. This is not done
by RDPREC directly, because RDPREC is used by the
control Port processor to read the byte count of an
input record which may not fit in the control port
circular buffer.

Send front-end command. This routine gets the
H.FCMDIK interlock, writes the command word, and
interrupts the 7/32.

Check 7/32 buffer status. This routine reads H.NOBUF
in FPCOM, and sets H.PTWTBF in the Port if H.NOBUF is
non-zero. On exit, it tells whether or not output may
be done.

6SM No. 134.1
Page 31

4,6.11 Control Port Processing

1FP subroutine PCP is the main control routine for processing a
Control Port. It 1is called by MAINLOOP once for each Control
Port. It does the following:

1. Make sure there is a control point with the correct Control
Port number in W.CPFE; move to that control point, and get
field access.

2. Examine the input FET for the Control Port. If the 7/32 is
not running, set the FET complete.

3. If the FET is not complete, move lines from the 7/32 to the
CM input buffer until there are no lines in the 7/32 or the
next line won't fit in the CM buffer. :

4, Examine the output FET. If the 7/32 is dead, set it
complete.

5. If the FET is not complete, move lines from the CM buffer to
the 7/32 until the CM buffer is empty or the 7/32 Control
Port is full.

Control Port data is transferred verbatim in both directions.
This means that in the 6500 CM, the first data byte (the first
byte after the Uu-byte header) will always be in byte 4 of a CM
word. The header will occupy bytes 0-3 of the first CM word of
the "line." The first header byte always contains the exact byte
count for the line (including the header bytes). There are no
EOL bytes. .

Note that this is different from the CM data representation - in
Native Format, in which the header has a CM word all to itself,
and the data starts in the next CM word.

If FREND is dead, or the front-end is turned off in the EST, or a
hardware error occurs during Control Port processing, 1FP sets
the Conrol Port FET complete with an appropriate error code in
bits 9-13 of the code/status.

4,6.12 Stack Request Processing

1FP subroutine PRS is the main control routine for processing the
Request Stack. It 1s called once every pass through the main
loop, and it processes Stack requests until none remain or until
1/4 second has elapsed, whichever comes first. This time
limitation ensures that the Control Ports get regular service,
especially when the Stack request load is heavy.

Preliminary processing by PRS includes:

6SM No. 134.1
Page 32

1. Abort requests without any processing if the front-end is
turned off in the EST, by putting the error code in the FET
and setting the BX bit in the stack request.

2. Abort requests when the 7/32 is dead, unless the requests are
for loading or dumping (0.FRDM,0.FWTM,0.FHL). These requests
do not require Ports, while all others do.

3. Move to the requesting control point (except O.FWRP), and get
FL access.

4, See if the overlay needed to process this request is in core,
and load it if not.

Next PRS calls one of several subroutines, depending on the order
code, to do the real work. Each of these subroutines will
process the request until it is complete, or there is an error,
or the control point must be swapped out (WT.IN or WT.OUT).

These subroutines return with A=0 if there was no error, or the
error code is in A. If a swap is required, the wait state is in
location WAIT.

In normal request terination, PRS does the following:

1. Call subroutine SWAP, which will do an M.SWO request if the
wait state in WAIT is non-zero.

2. Call subroutine CMPLT, which sets complete bits in the FET,
FNT, and the stack request (direct cell copy). The FET is
left busy if WAIT=0.

3. Set the BX bit in the stack request, which tells CPSP -the
request is not to be reissued.

4. Release FL access.

5. 1If the request accessed a 7/32 Port, set the flag in H.FPDONE
to tell the 7/32 to send port status to MANAGER.

6. Call subroutine ENDSR, which writes the Stack request back to
CM and does a CE.SRX monitor request. This gives the request
to the CPU for final processing.

In the case of errors, PRS finishes the request this way:

1. Put error code in the code/status field of the Stack request.,
This is an internal error code, which CPSP and 1SY will use
to select the dayfile message and FET error code, as defined
in comdeck =DSKERR.

bO5M NO. 134.1
Page 33

2. Set the BX bit so that the CPU will not reissue the request.
Since the code/status field of the request is not complete
the CPU will do error processing. .

3. Release FL access, an set the H.FPDONE flag if the request
accessed a Port.

4, Call subroutine ENDSR to write the request to CM and do the
CE.SRX request, to give the Stack request back to the CPU.

4.6.13 Field Access

1FP, like 1SP, does not use the SCOPE 3.4 method of Field Access.
The Justification for this is the same as for 1SP--that 1is, if
1FP had to wait for a storage move during a Monitor request, it
might result in system lockups.

This is clearly true in the case of 1SP. In the case of 1FP
however, it turns out that FL access is not needed while any
Monitor requests are done; 1FP could have been written as a SCOPE
3.4-type PP, 1FP is the way it is because the control-point
assignment and FL access code was taken almost verbatim from 1SP.
It was left this way after considering that it would be easier. to
maintain: 1t would not be necessary to make sure FL access was
dropped when adding new Monitor requests.

FL access is released by the regular call to R.TFL. It is gotten
by subroutine ASSIGN, before processing a new Control Port or
Stack request. ASSIGN manipulates the PP status word directly,
instead of calling R.RAFL, so as to avoid waiting for storage
moves, If the storage move flag 1is set at a control port,
processing is skipped: Conrol Port processing will be done on
another main loop pass, and Stack requests are reissued.

h.6.14 Swapping

1FP swaps user jobs for one of two reasons:

WT.IN There is no input data in the user's 7/32 Port. MANAGER
will cause the job to swap in when the 7/32 sends an
INBS message to MANAGER, indicating that the job has
input.

WTI.OUT The job's port on the 7/32 is full. MANAGER will swap
in when he receives an OTBS message indicating the Port
is empty (or nearly empty).

To swap a job, 1FP changes his input register temporarily to CIO,
while he makes the M.SWO request with recall of PPIR.

If the job is a console job, 1FP will just set the FET complete,

6SM No. 134.1
Page 34

rather than attempting a swap. Console jobs normally have
Control Ports, and they should therefore know the exact status of
Data Ports which they control. MANAGER and ARGUS will know if
there is input data to read, or if the Data Port has room for
output, so this situation should not arise.

4.6.15 1FP Overlays

1FP has two levels of overlays, . The first overlay level, the 6Fx
routines, contain the various order code processors, These
overlays load immediately following the I/0 buffers.

The second overlay level, the T7Fx routines, contain the
translation tables needed for the first level routines. These
overlays load immediately after the 6Fx ones.

The overlays are:

. 6FC for CPU read/write orders.

. 6FP fof PP read/write orders.,

. 6FM for processing of O.FRDM, O.FWTM, O.FHL.

. 6FW for block read/write orders.

. TFO, T7FA, TFF, T7FB for translation according to file

connect type (OM, AS, AF, BI respectively).
. TFH for dayfiling hardware error messages.

1FP order codes are divided into two distinet groups--those that
reference Data Ports, and those that do not. The former transfer
character data and some need a translation overlay; the latter
need no translation, and are all processed by overlay 6FM.

Hardware error messages are dayfiled only after Stack request
processing is finished and the overlay in core is no longer
needed. This is how all these overlays can occupy the same core.

Overlays (except TFH) are loaded by subroutine ORDEROV, on the
condition that the required overlay is not already in core. Thus
all overlays except TFH must be re-entrant.

4.6.16 7/32 Hardware Error Processing

1FP treats most of the 7/32 hardware errors it checks for as
fatal. It retries only in the case where the channel never
becomes full after a Read (or Test-set) function hs been sent to
the 7/32. This is the only type of hardware error that has ever
appeared to be recoverable. If this condition occurs, 1FP makes
one retry attempt. So far, this has proven 100% successful.

5.0

6SM No. 134.1
Page 35

When 1FP detects a fatal hardware error condition, it immediately
completes the Control Port transfer or Stack request it was
working on, without any further action on the 1I1/0 channel. The
standard signal for this to set the A register negative and exit
the hardware driver subroutine. All higher 1level subroutines
must check for A<0 and exit, until the highest level routine is
returned to. This routine (PRS, PCP or MAINLOOP) must clean up
its operation, then call subroutine HWMSG to doc something about
the error.

Subroutine HWMSG loads overlay 7FH and calls it by return Jump.
On return, HWMSG jumps to R.IDLE, so that the PP will be
reloaded. This is done because of the possibility that the
apparent hardware error is caused by something wrong in 1FP code.

Overlay 7FH formats a message for the operator, which contains
all relevent information about the error, This message is
flashed at the bottom of the right screen until the operator
acknowledges. This is done to allow the operator to read more
diagnostic information from the lights on the 7/32's front panel,
before this information is destroyed by more 1FP activity.
Because of space limitations, the right-screen message 1is
severely abbreviated--these messages are described in great
detail in the FREND Operator Guide. They are listed in section
7.1 below.

When 1FP is reloaded after a hardware error, it goes through its
regular initialization, during which it will make some crude
checks of the hardware. Any hardware errors during
initialization will cause 1FP to declare the 7/32 dead, and set
all Control Ports complete as they are first processed in the
main loop. This is how MANAGER may be killed in the event of a
catastrophic hardware error.

4.7 MIR

5.1

5.2

MTR was modified to call 1FP if there is at least one outstanding stack
request in the 'FD" DST, and 1FP is not active. Subroutine ITFP is
called by the MTR mainloop. This routine scans the entire DST for DSTs
of type DT.FD. For each such DST entry, if the "1FP-active" flag is
not set, 1FP is initiated by calling subroutine APPJOE. Note that this
scheme will handle multiple FD DST entries.

1FP generates a number of operator error messages which require
operator intervention before processing can continue. These are fully
described n sectin 8 of the FREND SYSTEMS OPERATOR GUIDE.

Turning off device FD in the EST will cause all front-end requests to
be aborted by CPSP. This terminates all communicatin with the 7/32. by
1FP.

6SM No. 134.1
Page 36

6.0 User Aspects

6.1 User aspects relate to the rules for doing input/output on connected

files.

These are fully described in sections 2.3 and 2.4.

7.0 System File Changes

7.1 1FP Hardware Error Messages.

These messages are issued to the system dayfile after a 1FP hardware
error is acknowledged by the operator.

FD RD ERR AAAAAA+BBB SSSS

FD

FD

FD

FD

FD

FD

FD

FD

FD

FD

FD

FD

RD

RD

WT

WT

WT

TS

TS

LD

LD

FN

ST

Bad status after A front-end read

DCN AAAAAA+BBB SSSS
Front-end read prematurely disconnected

HNG AAAAAA
No data from 7/32 on Front-End read

ERR AAAAAA+BBB SSSS
Bad status after Front-end write

DCN AAAAAA+BBB SSSS ‘
Front-end write prematurely disconnected

HNG AAAAAA
Data from 1FP not taken by the 7/32

ERR AAAAAA SSss
Bad status after a Test-set operation

HNG AAAAAA
7/32 sends no data on test-set operation

HNG SSSS
Halt-load operation doesn't complete

DCN +BBB SSSS
Write-interface-memory prematurely disconnected

HNG
7/32 doesn't take data on write-interface-memory

HNG FFFF

7/32 doesn't accept function from 1FP
HNG

7/32 won't send status to 1FP

6SM No. 134.1

Page 37
AAAAAA = Last address sent to the 7/32.
BBB = Number of bytes transferred.
SSSS = Status after last operation.
FFFF = Last function sent to the 7/32.

7.2 1I/0 Error Messages

BAD CHARACTER CODE
Issued by 6SM when 2TT Detects an invalid connected file code.

ILLEGAL FRONT-END PORT

Issued by 6DM when 2TT detects an invalid (zero) front-end port
number.

BAD FET BUFFER POINTERS (FRONT-END I/0)
An error in the FET on connected Read or Write

UNRECOVERABLE FRONT-END I/0 ERROR
Hardware error on connected Read or Write

LINE TOO LONG FOR BUFFER (FRONT-END I/0)
Input line too long on connected Read

FRONT-END INOPERATIVE
The front-end has crashed during connected I/0

BAD ABSOLUTE FRONT-END ADDRESS
Attempt to Read or Write non-existent core in the 7/32

1FP KILLED 7/32
1FP has caused the 7/32 to crash, because of some fatal front-end
system inconsistency.

1FP- DEAD 7/32
1FP has decided that the 7/32 has crashed.

8.0 REFERENCES

SMP 28 -~ MSU front-end.

SMP 49 - MSU front-end, phase 1.

SMP 60 - front-end command and control.
6SM 131 - Merit interactive support.

6SM 124 - FREND,

6SM 135 - MANAGER and frends.

FREND OPERATOR GUIDE.

INTERDATA 32-BIT. SERIES REFERENCE MANUAL.
MODEL 7/32 REFERENCE MANUAL.

e .8 Bl Tl Lo I D IW

R. Bedoll, J. Renwick, D. Katz

/5/// ..

