1.0

MICHIGAN STATE UNIVERSITY
COMPUTER LABORATORY
6000 SCOPE MEMO NO. 124.1
March 25, 1980

FREND

Introduction,

This 6SM describes FREND, the operating system developed for the 7/32
front-end computer system at Michigan State University. FREND serves
as a front-end for the SCOPE-HUSTLER system on the CDC Cyber 750,
handling interactive support as well as driving printers for the batch
printer subsystem.

The entire front-end development project consisted of extensive
changes to software on the Cyber mainframe, as well as the development
of FREND. The Cyber software is described in 3 separate 6SMs: 6SM
135 (MANAGER and associated routines), 6SM 134 (1FP and associated
routines), and 6SM 131 (ARGUS modifications for MERIT interactive
support). The interaction between 1FP and FREND is described both in
this 6SM and in 6SM 134. The interaction between MANAGER and FREND is
described in 6SM 135.

n r ren ecifications

2.1 Interactive support,

The front-end supports asynchronous, teletype compatable ASCII
terminals at 110, 300, and 1200 baud. Both dial-up and hardwired
terminals are supported. Auto-baud-rate detection is provided on
the 110/300 baud lines. The total aggregate baud-rate supported
is approximately 100,000 baud.. - .

'2.1.1 Echoplex operation.

Copyright 1978, 1979, 1980 M.S.U. Board of Trustees.

6SM #1
Page

24.1 - FREND
2

2.1.2

2.1.4

All terminals can be run in either half-duplex mode, with
no echo-back of characters, or in full-duplex mode, with
FREND echoing back each received character.

Typed-ahead input,

Data may be entered ahead of any process on the Cyber
mainframe which is reading that data. Up to 5 typed-ahead
lines may be entered. Any additional lines are discarded,
and a message is returned to the terminal.

ine len

Input lines may be up to 240 characters in length. The
maximum length is specified by the INLEN command. Lines
longer than the current INLEN setting are automatically
broken, and begin a new line. There is no restriction on
the length of output lines.

Character sets,

FREND supports terminals in the ASCII character set, as
well as the APL typewriter-pairing and bit-pairing
character sets. Other alternate character sets may be
defined in the future, as the need arises.

For interactive connections, all data is represented
within the front-end in ASCII. APL output is translated
as it is sent to the terminal. 1FP is responsible for
translations between ASCII and the character set in use by
the Cyber mainframe (either ASCII or Display-code).

For the batch printers. FREND supports both Display=-code
and ASCII. Printer data 1is not translated until the
auto-driver-channel sends the characters to the printer -
so print buffers may be found in either display-code or
ASCII within the front-end.

Control characters,

FREND supports a number of special control functions, each
one selected by a sinzle specific control character. The
ALTER command may be used to change the control characters

which invoke a specific control function. The supported
control functions are:

ABORT abort the current process (ESC).

BKSP character delete (BS).

CANCEL line delete (CAN).

CONT line continue (ETB).

ECHO toggle echoback in full duplex (SYN).

6SM #124.1 - FREND

Page 3
EOL end-of-line (CR).
HALTOUT stop the current output line immediately
(pC3).
LECHO echo current input line (ACK).
LITERAL literal next (DLE).
RETIN retrieve the last typed-ahead input line
(NAK).

STARTOUT restart output stopped by STOPOUT (DC1).

STOPOUT stop the current output line (DC4).

TERMOUT terminate the current output line (SUB).
These characters are fully described in chapter 8 of the
INTERACTIVE system user guide.

2.2 Batch printer support,

The front-end supports the use of ASCII line printers to print
batch output. Control of these printers is handled by special
terminals called "I/0 commander terminals" (the operator's
terminal and the 7/32 console are enabled as I/0 terminals).

2.2.1 haracter sets

The batch printer subsystem will print either ASCII fancy
(AF) or old MISTIC (OM, known also as Display Code).
Automatic character set determination 1is done on a
line-by-line basis. Non-printing ASCII characters are
automatically deleted from ASCII output. with a suitable
warning.

Currently, FREND is driving one full ASCII (96-character)
printer and two upper-case-only (6l-character) printers.
An output file may be directed to one or the other of
these at the user's discretion.

2.2.2 Job recovery

With the exception of a fatal <Cvber mainframe crash,
output jobs are recovered and returned Lo Lhe output queue
in the event of any hardware or software malfunction,
either in the 7/32 or in the Cyber mainframe.

'2.2.3 Line length, -
'The maximum length of a print line is 136 characters (plus
a one-character carriage control). Lines longer than this

are folded at column 136, with the remainder of the line
printed, single spaced, on subsequent lines.

' 63M #124.1 = FREND

Page

y

2.3

2.2.4 Special features,

Several new features are present in the FREND printer
system that are not available through ARGUS. Among them
are the capability to skip forward on print files, more
flexible . control when printing on special forms, and
better recovery in case of a failure. Jobs with dayfiles
have the dayfile printed at the beginning of the job, on
the right hand side of the page (to even out ribbon and
hammer wear).

omman

FREND supports a number of terminal commands. A command may be
issued either by the user at a terminal (the command must be
prefixed by the current front-end command character) or by the
Cyber mainframe (via a data port). The command must appear alone
on a line. Blanks and commas serve to delimit parameters, and
the command is free field. All front-end commands applicable to
users are described in chapter 8 of the INTERACTIVE system users
guide. All non-user commands are described in the FREND OPERATOR
GUIDE. All batch printer commands are described in the FREND
BATCH PRINTER OPERATOR'S GUIDE.

The commands may be classified into four groups--user commands,
I/0 commands., operator commands. and console commands. In the
following command descriptions, the standard documentation
notation is used. Required parameters are enclosed in braces
(m{1m. Optional parameters are enclosed in brackets ("[]").
Parameters from which one must be chosen are separated by the
vertical slash ("|") (the default value in such a case is
underlined). Values that must be entered verbatim are in UPPER
CASE. Values that must be filled in are in lower case.

2.3.1 User commands,

The following commands are available to any user on the
front-end.

ALTCHAR, {charset{OFF|NONE} -[,AUTO]. . .
Selects an alternate character set charset; currently
charset may be APLTYPE or APLBIT. If AUTQ 1is
specified, .the terminal may be toggled between the
alternate character set and the default ASCII set.’
When the terminal is in an alternate character set,
FREND -will translate AF.and OM output into that set.
NONE and OFF are synonyms; they disable all alternate
character set processing.

ALTER, {RESET|LIST|char=function...}.))
Sets the given character to the given function. RESET

6SM #124.1 - FREND
' Page 5

resets to the default’ character translations. LIST
lists all the translations currently in effect.

BINARY ,[ONIOFF]. ,
Turns on and off binary mode. When BINARY,ON is in
effect, no control characters are interpreted. Data
is read verbatim. as a continuous stream. Binary mode
is exited by the break key. or by a "BINARY ,OFF"
command issued by the Cyber mainframe.

CCTL,{ON|OFF}.
CCTL,OFF suppresses all carriage controls on AF and OM
files. These 1lines will be single spaced, with the
first character printed. CCTL.ON reverts to the
standard method of processing carriage controls on
these files.

CDELAY[,CR=N]{,LF=N][,HT=N][,VT=N][,FF=N]
Sets N as the delay in characters (nulls) for CR, LF,
HT, VT, or FF.

CONSTAT.
Displays current socket and port connection numbers in
decimal.

DEQ[,N][,LIST].
Dequeue N typed-ahead lines. If N is omitted, 1 line
is dequeued. If LIST is specified, the 1lines are
listed as they are dequeued. Dequeued lines are
thrown away.

ECHO, {ON|OFF} .
Turns on and off echo-back of input characters.
Normally is ON on 300 and 1200 baud connections, and

OFF on 110 baud connections.

FECC,{ciDATA|RESET}.
Reset the current front end command character to ¢.
where ¢ 1is a single character., or one of the
acceptable abbreviations for ALTER. If ¢ = DATA. no
fecc is processed. If ¢ = RESET, the fecc is reset to
a percent sign.

FESTAT. _ Lo o
Returns " the number ‘of users connected to the
front-end, broken down by baud rate and destination
connect ion -(MERIT or MISTIC).

FLIP..
Toggles between two connections. The connections may
be two MISTIC connections, one MISTIC and one MERIT,
or two MERIT. The current port.is printed after the
flip is completed. FLIP is only valid if there are 2
connections.,

6SM #124,1 - FREND

Page

6

INLEN,NNN. .) ’
Sets NNN as the new maximum input line 1length. Any
input line will automatically be split when it exceeds
the length. The value must be between 1 and 240. If
a zero value is given. it is reset to 2U40.

JOBSTAT.
Prints the current status of the mainframe side of a
connect ion. Restricted to MISTIC connections only.

LOGIN.
Establishes a connection to MISTIC. Only a total of
two connections are allowed, including any MERIT
connect ion.

LOGINMSG.
Displays the current login message.

MIX,{ON|OFF}.
MIX,ON allows output from two connections to appear at
the terminal intermixed. MIX,0FF allows only the
output from the connection currently flipped to (the
primary connection) to appear at the terminal.

MSU.
If the second socket connection is to MISTIC, the
connections in the socket are flipped so that MISTIC
is the primary socket connection. The user must have
2 connections.

NET.

If the second sockei connection is to MERIT, the
connections in the socket are flipped so MERIT is the
primary connection.

NETCNT, dest.
Initiate a connection to MERIT. Dest 1is the
destination code (MS, UM, or WU). NETCNT,MS is
allowed only from the 7/32 console and the operator's
terminal (sockets 1 and 2).

NPC[,{OFF|PART {ON}[,{CTRL/MNEM!c}1]. , .
Sets the non-printing character interpretation mode.
OFF suppresses interpretation - all control codes are
sent to the terminal. PART causes all non-printing
_characters that ‘do not -have sdssociated hardware :
functions to be- interpreted. ~ON causes all
nop-printing characters. .to .be interpreted.. -MNEM .
interprets the characters in their mnemonic form (e.g.
(ETX]). CTRL causes interpretation in the "CTRL" form
(e.g. <CTRL-C>). The "g" form causes the character ¢
to be printed in place of the non-printing character. _
NPC alone implies "NPC,PART,%". "SHOWNPC" is a

synonym for "NPC",. =) .
see g . e -wmz?-wm~m U\» o

2.3.2

6SM #124.1 - FREND
. Page 7

PARITY,{EVEN|ODD|NONE|OFF|ON}.
Sets the output data parity to the specified value.
OFF is equivalent to NONE. ON is equivalent to EVEN.

QUIT. . .
QUIT simulates a disconnect on the current port
connection. If the user has two connections, the
remaining connection becomes the primary connection.
If there is only one connection, the user is
disconnected from the front-end.

READER, {ON|OFF}.
Sets the reader flag in the socket. READER,ON causes
a DC3 to be sent to the terminal when no input buffer
slots are left in the port. A DC1 is sent when all
input buffer slots in the port become free.
READER,OFF stops the DC1/DC3 process.

RMARGIN,NNN.
Sets NNN as the current right margin. Output lines
longer than this will be folded with the remainder
printed single-spaced on subsequent lines.

TERMINAL,type.
Sets the indicated terminal type and associated
attributes.

TERMSTAT.
Displays the current terminal status. This
information includes right margin, input line length,
control character delay values, parity selection,
terminal type, CCTL, READER, MIX and NPC flag values,
backspace echo character, and the alternate character
set selection (if any).

TIME.
Displays the current time.

1/0 commands.

The following commands are available. only to - those
terminals. authorized as I/0 Commander Terminals.
Currently, this includes the 7/32 console, the operator's
terminal; and the - I/0 room "Teleray terminal. All
preceding commands are also available. ' E

ACK,NN. ~
Acknowledges 1/0 diagnostic messages (such as PAPER
OUT).. This command keeps the messages from recurring
every two minutes.

ALIGN ,NN[,MMM].

Page

6SM #124.1 - FREND
8

Aligns forms. The specified printer prints the first

MMM PRUs of the job over and over again, slowly, to

allow forms alignment. "ALIGN,NN,0" will cause the

printer to pick up from where it was, at full speed.
" The default number of PRUs is 10.

BANNER,NN. .
Sets full banner pages on printer NN. This 1is the
normal condition. This command reverses the effect of
the NOBANNER command.

BKSP ,NN[,MMM].
Backspaces the job on printer NN by MMM PRUs (default
is 10).

CHANGECS ,NN. ,
Flips back and forth - between the AF and OM character
sets when carriage controls are suppressed, since
automatic character set detection cannot take place.

END,NN.
Ends the job on printer NN. The entire dayfile will
always print, if one is present.

GO,NN.
Restarts the specified printer when it is waiting on a
"PM" carriage control message.

KILL,NN.
Kills the job on the specified printer. This causes
the dayfile to stop printing as well. The END command
must have been issued previously.

NOBANNER,NN.
Turns off banner pages on the specified printer. A
single line with the job sequence number is printed
instead. This will be counteracted by either the
BANNER or the ROUTE command.

OFF, {PRinn}.
Turns the specified printer logically off. Any job
currently printing will c¢omplete before the printer
stops. OFF,PR turns off all printers.

ON, {PR.nn} ' : ,
Turns the specified printer lozically on. - ON,PR turns
on all printers.

PAGELIM NN PPP.
Sets the page limit of the Job currently printing to
PPP pages. A value of zero means infinite.

PRNTSTAT[.NN].
Returns the status of the specified printer. or of all

2

.3.

3

'6SM #124.1 - FREND
Page 9

printers if none is specified.

PRNTTEST,nn[.t[.C]].
Runs the printer test on the specified printer. The
printer must be off and idle. If T is specified, only
a single subtest 1is run. If C is specified, the
subtest specified by T is run continuously, until the
REW command is used.

PRU,nn, xxx{,yyyl. ' _
Sets the PRU 1limits on the specified printer. If yyy
is not specified, the second PRU limit is set to zero.
Any value greater than 65534 results in no limit.

REP,NN.
Causes the job on the specified printer to print an
extra copy.

REW,NN.
Returns the job on the specified printer to the output
queue and turns the printer off.

ROUTE,NN,R.
Routes the printer to print jobs from source R. This
command also turns on full banner pages.

SKIP,NN[,MMM].
Skips the job forward MMM PRUs (default is 10).

SUP,NN.
Suppresses carriage control interpretation on the
specified printer. The first column is printed.

USERFORM ,NN.

- Flags the printer as having user-supplied forms. A
special flag in the accounting message dayfiled by
MANAGER is set to circumvent charging the wuser for
forms charges. This may be set before or during a
job, and is turned off at the end of the job.

Operator commands.

The following commands are available at the 'operator's
terminal. All preceding commands are available as well.

AUTOTEST,NNN, .)) . .
' Initiates the automatic PAL test seaquence. The test
is rerun every NNN minutes. The test may be stopped

by using "SET,AUTOTEST,O".

BUS.X,{ON|OFF}.
Turns switchable bus X on or off. If OFF, all devices

6SM #124.1 - FREND

Page

10

2.3.4

. connected through the bus are disconnected. If ON,
all devices connected through the bus are
re-initialized.

BUSIDLE,X.
Initiates a timed sequence of commands which will warn
users connected through the bus that the bus is about
to be turned off, and will then turn off the bus.

BUSSTAT.
Displays the status (either ON or OFF) of all
switchable busses.

LOGINMSG,me ssage.
Sets message as a temporary 1login message, which will
be lost the next time MANAGER is initialized.

PALTEST,NN.
Initiates a test of the PAL and modem for socket NN.
The socket must not be in use at the time.

SENDALL,message.
Sends the message to all terminals.

SENDBUS, X ,me ssage.
Sends the message to all terminals connected through
switchable bus X.

SET,parm,value.
Sets the specified parameter to the specified value.
The following are the parameters and their meanings:

AUTOTEST = 0 to stop the automatic PAL test
BLKMSU = 1 to print a Gothic MSU on
the banner page, or 0
INPINT = 1 to ignore extra input interrupts
in the PAL test, or O
LOGINMAX = max number of dual MISTIC connections
MERIT = 1 inhibits Merit network use, or 0
OPERMSG = 1 to print I/0 diagnostics at the
operator's terminal, or O
TRACE = 1 to trace connections on the

7/32 console, or 0
SOCK,NN, {ON|OFF}.

‘Turns -~ socket NN on or off. If OFF, any user is
'disconneeted, If ON, the socket is reinitialized.

Console commands

The following commands are available on the 7/32 console.
All preceding commands are available as well.

6SM #124.1 - FREND
Page 11

DATE.mmddyy. -
Sets the current date as indicated.

DISP,NNNNN.
Displays the word at address _ﬂuﬂu on the front panel.
"¢DISP,0" returns the .display panel to the default
address, showing the seconds counter and CPU
utilization percentages.

MON,NN.
Monitors socket NN. This command sets the panel
display to ‘display the data word for the specified

socket. The socket number is in decimal. The data’
word is 4 ASCII characters, of the form:
AABBCCDD
AA = auto-baud rate detect character
BB = last data character
CC = the last PAL input status.
DD = input interrupt count.

The address of the socket (in hex) is also printed at
the console TTY. "¢$DISP,0" returns the display panel
to the default mode.

TIME ,HHMMSS.
Sets the current time as indicated.

3.0 System programming considerations.

3.1

Iexts,
FREND requires 3 texts: FETEXT, FESYM, AND FEMAC.

FETEXT is a collection of macros and op-defs which define the
operation codes for 7/32 assemblies. It is necessary for any
assembly of 7/32 code. FETEXT works in conjunction with the
ID732 pseudo-op in COMPASS, which allows 7/32 assemblies. The.
resulting assembly may be either absolute cr relocatable.

FESYM contains symbol definitions- for all FREND tables.- In this
regard, it can be thought of as SCPTEXT for FREND. It is more
fully described_in section 3.7.

FEMAC contains a collection of macros used throughout FREND. The
most important macros are the task request macros. All tasks and
parameters are defined in. FEMAC. FEMAC ~ also contains a
collection of general purpose utility macros described in section
4.9,

All these texts are located as separate decks on the FE program
library. No text needs any other text to assemble.

6SM #124.1 - FREND

Page

12

3.2

3.3

3.4

FREND program library,

FREND resides on its own program library. Each relocatable FREND
deck 1is a separate update deck. When changing individual
modules, it is generally not necessary to reassemble all of
FREND. There is one common deck used by FREND which is also used
by the texts, and therefore resides on FEPL. This is /LMBI, the
definitions of the memory tables. This is used by FESYM and by
INITIAL - therefore FEPL must be present as an XTEXT. file
whenever INITIAL is assembled.

FREND jinstallation,

The following control card sequence will install FREND:
GETPL,FREND.
UPDATE,F.
RETURN,OLDPL.
GETPL,FE. (XTEXT FILE)
RFL,64000.
AUTORFL PART.
COMPASS,I,S=FETEXT,S=FEMAC, S FESYM.
LDSET, HEXMAP SBEX/MAPOUT.
LOAD,LGO.
NOGO,ABSBIN.
POST732,54.
The absolute FREND system now resides on file FESYS, and the load
map on FILE MAPOUT.

Overlay structure,

FREND is divided into 3 overlays, a (0,0), a (1,0), and a (1,1).
Since each overlay begins immediately after the preceding one,
they are all simultaneously resident in the 7/32. However, the
Cyber Loader requires only one overlay at a time to be core
resident on the Cyber mainframe during the loading process.
Therefore, this overlay structure dramatically reduces the core
requirement for loading and linking FREND.

The FREND routines are divided into 3 overlays using the
following criteria:
1. The overlays should be roughly the same size.
2. Routines which call each othér should be together.
3. Only backward linkages are allowed between
- overlays, so routines called by everyone should
be in the (0,0). while routines which call
. evéeryone should be in the (1,1).
4, Various variables used by many routines should be ’
in the INST deck in the (0,0).

The FREND deck preceeds the (0,0). The FREND10 deck preceeds the

(1.0). The FREND11 deck preceeds the (1,1) overlay.

Wt e s

6SM #124.1 - FREND
- Page 13

3.5 POST732.

3.6

3.7

POST732 is a utility which reformats an absolute 7/32 core image
into a form which can be 1loaded into the 7/32. In ‘the
reformatting process, the binary is rearranged so that each
consecutive 12 bits contains a single 8-bit 7/32 byte. ‘The
resulting image can then be loaded into the 7/32 over the 7/32
DMA interface. POST732 makes the following changes in the
overlays: i
1. Each overlay is changed into a (0,0) overlay.
2. Each 54 table is padded out to exactly 16D words.

This ensures that the 7/32 code is correctly aligned.

FREND installation,

The day "A" version of FREND was installed on 1/14/78 in LSD
46.00. This corresponded to FREND version 1.0.

The batch printer subsystem was installed in LSD 48.05/FEV 2.00
on 1/27/79. Extensive modifications were made to FREND, MANAGER,
and 1FP.

FESYM - FREND symbol text.

3.7.1 FESIM macros,

FESYM table macros are used to create symbols for tables
on the 7/32 system.

The following symbols are valid:
C.XXXXXX byte address of a 1 byte field
H.XXXXXX byte address of a halfword field
W.XXXXXX byte address of a fullword field
(byte addresses are always the leftmost byte)
V.XXXXXX 1 byte mask for the specified field
S.XXXXXX number.of rightmost bit in 1 byte field.
(rightmost bit = 0)
Y.XXXXXX width of field less. than 1 byte and greater
* than 1 bit.
J .XXXXXX bit number of leftmost bit. relative
to the start of the previous half word.
The leftmost bit = 0. These are
used only by bits to- be manipulated
by SBIT, CBIT, TBIT, and RBIT.

The following macros are used to describe tables:
GROUP ‘ defines a new table and establishes the prefix

s

e

6SM #124.1 - FREND

Page

14

CELL establishes table reservation for bytes, halfwords,

and fullwords.

FIELD establishes table reservation for inidvidual fields

3.7.2

within a cell.

Use of FESYM macros,

The FESYM macros are used to describe tables. They are
used in the following fashion:

1.

3.7.3

1.

2.

b,

A GROUP macro defines the start of a table. A table
name may be associated with the group. This specifies
the characters to appear immediately to the right of
the period for every symbol for this group.

An additional prefix may be specified. which

allows a leading letter to preceed all W. Symbols, for
special uses such as pointers.

Each byte, word, or halfword within the table

is described by the CELL macro. This macro also defines
a symbol of the form C.XXX, H.XXXX, or W.XXXX. The CELL
macro automatically aligns word and halfword fields to
the proper table boundary.

. Within a cell, individual fields may be described with the

FIELD macro. This macro allows fields to be any width, so
long as they stay within the previous cell. Fields are
given C, H, W, V, S, and Y symbols.

Any named field is automatically given C, V, and S

symbols unless overridden by the explicit specification
of symbols on the FIELD macro.

. A table is ended with the ENDGROUP macro. This macro

defines the length of the table. It also allows the end
of the table to be aligned to a word or
halfword before calculating the length.

Symbol _and coding conventions,

The width of a fullword, halfword, or byte field is
indicated by the first letter of the field (W..H, C)
Individual fields (using the FIELD macro) should gernerally
only be described within byte fields. The S and V symbols
are relative to a 1 byte field.

. All fields (the FIELD macro) have a C, S, and V symbol

generated for them unless only specific symbols are
requested.

All bit flags to be manipulated with the FSET,. FTEST,

6SM #124.1 - FREND
Page 15

FCLR, and FTOG macros should be described with a FIELD
macro requesting H and J symbols. The FIELD macros
should occur within a halfword cell.

4.0 Internal reference specifications.

4.1

FREND organization,

FREND consists of approximately 50 decks, arranged into 3
overlays. These decks contain tasks, interrupt service routines
(ISR's), and general subroutines.

Each ident or deck is a relocatable module. All linkages between
modules are accomplished through entry points. The modules are
linked and relocated into an absolute core image by the CYBER
loader.

In relocatable form, each module is a standard Cyber relocatable
deck, where each Cyber word (60 bits) represents one 7/32 byte(8
bits). 1In actuality, each Cyber word contains 1 to 6 7/32 bytes,
followed immediately by 0 to 5 Cyber words of zero, respectively.
The format of the data word is: 4/BC, 56/data where BC
is the U-bit byte count, and data is the 7/32 data, right
Justified, After the CYBER loader forms an absolute core image,
the POST732 program reformats this image into the 7/32 loadable
format of 1 byte (8 bits) in each 12-bit Cyber byte. This core
image is preceeded by a standard 77 table, and a 54 table where
the FWA and length of the 7/32 core image are stored in the ECS
image fields. The 7/32 core image immediately follows the 54
table.

This core-image file is 1loaded by MANAGER or LOAD732 over the
Cyber mainframe-7/32 DMA interface.

Appendix A contains a list of all FREND routines.

deratin tem structure

FREND is an interrupt driven operating system. -All interrupts

-are serviced by ISR's for each type of external device (PAL, line

frequency clock (LFC). programmable interrupt clock (PIC) and the
Cyber mainframe). ISR's always run in nonh-interruptable mode,
using register set 0. ‘Actions taken by the ISR's often generate -

‘requests for further processing. This processing, which is done

in interruptable mode, is done by tasks. A task is a processing
entity which is invoked by the FREND MONITOR. A task always runs
in interruptable mode, in register set F. . Once started, a task
always runs to complétion before another task begins. A task may

request other tasks to do further work. These tasks may be

6SM #124,1 - FREND

Page

16

4.3

requested immediately, o} with a program specified delay.

All FREND processing is done either by ISR's or by tasks.
MONITOR receives control after each task completes,. It then
finds the next task to be run, and enters it. When there are no
more tasks to execute, FREND enters a wait state, with interrupts
enabled. It remains in this state until an ISR requests a task.

Tasks,

The basic flow for the initiation and processing of a task is:

1. An ISR issues a REQTASK macro to request a task.

2. The REQTASK generates an SVC, which transfers
control to the task request routine.

3. The task request routine moves the task request block
onto the proper task request queue, and returns
control to the ISR.)

4. The ISR terminates, returning control to MONITOR.

5. MONITOR finds a non-empty task request queue, and
removes the task request block from the queue. The task
parameters are loaded into registers.

6. MONITOR jumps to the start of the requested task.

7. When the task is complete, it returns control to MONITOR.
MONITOR then looks at the task request queues again.

8. If there are more tasks to process, steps 5 through T are
repeated.
These additional task requests may have come from the task
Just run, or from other ISR's which ran while the
current task was running.

9. When there are no more tasks to exé@te, MONITOR
enter’s a wait state. It will be reawakened only
when an ISR completes.

Tasks are always requested through the REQTASK macro, which makes
a supervisor call (SVC). The SVC immediately switches to register
set 0, and invokes the SVC task request routine. The task
request block (generated by the REQTASK macro), is entered into
the appropriate task request stack (actually a 7/32 circular
list). There are 3 such stacks: high priority. medium priority,
and low priority. All tasks on the high priority stack will be
processed before any tasks on the medium are - processed.
Likewise, all tasks on the medium priority stack will be
processed before any tasks on the low priority stack. The
following ¢onventions should be followed for the task queues:
1. The high priority stack should be limited to tasks

which are very time critical. An example is

SKOTCL (socket -output control) setting up the next

output line to print - this must be done within

one character time, or there will be a noticable

pause in output.
2. Most tasks should go to the medium priority stack.
3. The low priority stack is used for non-time critical

tasks. -

6SM #124.1 - FREND
: Page 17

4. Any task which recalls itself should recall itself
to the low priority queue, or with delay.

The REQTASK macro generates a task request block. The block
consists of a two word header, giving the task number, priority,
parameter count, and ID. The parameters follow the header words,
with one parameter per word. Parameters specified in registers
are stored in the task block by the REQTASK macro, before the
SVC. The block is copied verbatim into the proper task request
stack.

By convention, a task is a closed subroutine, whose entry point
is the task name suffixed by a pound sign ("#"). This limits
task names to six characters. Tasks may have up to 4 parameters
- these are defined for each task 1in FEMAC. When MONITOR starts
a task, it removes the task request block from the request stack.
The ID is placed in R4, and any parameters are placed in R5 - R8.
The task is then entered by a BAL instruction (branch and link,
RC is the return address). There are no specific exit conditions
for tasks. Tasks may use all registers - tasks always run in
register set F, with interrupts enabled.

Because a task is a closed subroutine, it may, under special
circumstances, be called directly by another task as a
subroutine. This happens during initialization. It also is done
frequently for SOCMSG. Tasks should never be called as
subroutines by ISRs, however, since they are not designed as
re-entrant routines.

Delayed tasks are requested using the REQTASK macro, but by also
specifying a DELAY parameter, giving the delay time in
milliseconds. These tasks are entered into the timer queue,
which is a 1linked 1ist kept in order of expiration time. The
list is maintained using the PIC. Whenever the PIC interval
expires, all expired tasks are delinked from the chain and added
to the appropriate task request stack. Recauyse of additional
overhead in the timer queue, delays of less than 100 milliseconds
should be avoided.

Each task., with its required parameters. 1is defined in FEMAC
using the DEFTASK macro. After a task is defined, it is
requested wusing the REQTASK macrc, specifvinz the correct

parameters. Parameters are of the key-word type, and are order
independent. If the correct parameters are not specified for a
task, an assembly error results. An example of the REQTASK macro
is: " - v

REQTASK TASK=SOCMSG,SOCKNUM=RA,MSGFWA=MESSAGE

Appendix B contains a list of all FREND tasks.

6SM #124.1 - FREND

Page

18
4.4

4.5

ISR (Ipterrupt Service Routine),

An ISR 1is automatically entered by FREND when an interrupt
condition occurs. There are 2 basic types of interrupts: machine
exception, .and immediate. These are discussed in full in the
T7/32 reference manual.

When an interrupt occurs, the 7/32 will switch to register set 0,
disable interrupts, and enter the ISR at a predefined address
(depending on the type of interrupt). If interrupts are
disabled, the interrupt is aqueued until interrupts are reenabled.
Note that ISR's always run in register set 0. Because this is
also the register set used by SVC (REQTASK), care must be
exercised when doing a REQTASK from within an ISR.

Exceptional condition: illegal instruction, machine malfunction
(parity error), and divide fault. For each of these conditions,
there is a PSW stored in low core (by INITIAL) which points to
the ISR. The location of the PSW is fixed by the hardware.

Immediate interrupts are actually interrupts from I/0 devices.
There is a single I/0 bus, and hence only 1 1level . of 1/0
interrupts. The priority of an interrupt from a device is
determined solely by its position on the bus, not by its assigned
bus address. The closer the device is to the 7/32, the higher
its interrupt priority. When an immediate interrupt occurs, the
7/32 looks 1in core at address DO+(ad*2), where ad = the bus
address of the device. At this address in core is a halfword
which contains the address of the ISR. Because it is a halfword,
the address must be 16 bits (and it must be even). If the
address is odd, it is the address of a channel command block
(CCB) used for automatic output to terminals. When the 7/32
enters the ISR. it presets registers

RO,R1 = old PSW

R2 = device number

R3 = device status

ISR's should always exit with the EXITINT macro. This macro
clears the wait flag in the old PSW, ensuring that, if MONITOR
was in wait state, it leaves wait state to process any task
requests generated by the ISR.

Appendix C contains a list of all FREND ISR's.

Flow of control,

Once FREND is loaded, control is transferred to routine INITIAL,
discussed below. After INITIAL has completed setting up the
FREND tables, it transfers control to MONITOR. From this point
forward, all processing is done either by tasks, or by ISR's.

4.5.1 r

4.5.1.1

6SM #124.1 - FREND
Page 19

Steady state condition,

In the steady state condition, is user is logged
in and connected directly from his phone line to
a socket. The socket is logically connected to a
port. Within the 7/32, data flows from the
socket to the port, and vice versa. Between the
7/32 and the Cyber mainframe., data flows from the
port, over the DMA interface to 1FP. From 1FP,
it flows to either MANAGER, ARGUS, or the user
program. The interaction between 1FP and the
7/32 is described fully in section 4.19. The
description to follow is a brief, step-by-step
picture of data flow within the 7/32.

User enters a character.

The PAL interrupts the 7/32. PALISR receives
control, reads the character from the PAL, and
stuffs it into a buffer assigned to the socket.
(a socket is always associated with a specific
phone line).

Steps 1 and 2 repeat until the user enters the
end-of-line character (usually a carriage return)

When PALISR detects an end-of-line, it completes
the buffer assigned to the socket, and requests
task SKINCL (socket input control), passing it
the address of the buffer.

SKINCL analyzes the line in the buffer.

If the line starts with the FECC, SKINCL requests
task FECSK (front-end command from socket).
passing to it the address »f the buffer. FECSK
will then call COMMAND to process the front-end
command. Based on the . errcr reply from COMMAND.
FECSK will return either an error message or a
CR/LF to the socket. It does this by requesting
task SOCMSG, passing to it the socket number and
the message address.

" If the line is simply data, SKINCL will call

subroutine ADDPORT.

ADDPORT adds the address to the port circular
input stack, and, if necessary, moves the address
from the bottom buffer on the stack into word
W.PTIN in the port.

63 #124.1 - FREND
Page 20

10.

11.

12.

13.

14.

For

SKINCL will then request task SENDCP to send an
FP.INBS (inbut buffer status) message to the
control port belonging to this socket.

SENDCP will look at the port input circular list
and calculate the number of input 1lines in the
port. It then builds an FP.INBS protocol record,
inserting the input line count, and calls ADDPORT
to add this record to the input circular stack
for the control port to which the data port is
assigned.

When MANAGER receives the FP.INBS record
indicating that there 1is data on the 7/32 for
this port, if the job is swapped out waiting for
input., MANAGER calls MAN to free up the job.

The job will swap in and reissue the CIO read
request. This causes 1FP to run. 1FP will read
the W.PTIN word for this port on the 7/32. This
word will contain a buffer address for a line of
data. 1FP will then read the data buffer
directly from the 7/32, and do any necessary
translation before writing the data to the users
job.

1FP then writes a command to the 7/32 telling it
that it Jjust read some data, and interrupts the
T7/32.

Routine 1ISR65 on the 7/32 will throw-away the
buffer which was just read by 1FP, and refill
W.PTIN with the next 1line from the port circular
stack.

When the user enters the next 1line of data, the
process begins at step 1. Note that a buffer is
not assigned to the socket until the user enters
the first character of a 1line.

output from the Cyber mainframe to the 7/32

terminal, the flow is similar.

1.

The wuser program makes a CIO request to write

‘data to his program.. This causes 1FP to be

" called to process the request. 1FP reads the

address of an available buffer on the 7/32, and

. writes the data from the user program into the

7/32. (1FP does any necessary translation to
ASCII).

1FP writes a command to the 7/32 indicating the
port to which ' the data belongs. It then
interrupts the 7/32.

6SM #124.1 - FREND
Page 21

3. Routine ISR65 receives control. The address of
the buffer containing the data is added to the
top of the circular output stack for the port to
which the data belongs. Task SKOTCL (socket
output control) is then started.

4, SKOTCL ensures that no data is currently printing
for the socket. .It then removes the bottom entry
from the port output circular stack, and sets up
the CCB associated with the socket to print the
data in the buffer. SKOTCL. then starts the
output to the socket.

5. The 7/32 microcode, through the CCB mechanism,
automatically causes all characters in the buffer
to be sent.

6. When the buffer is exhausted, an interrupt is
generated and routine OUTISR gains control. This
routine will release the buffer just printed, and
then will request task SKOTCL again. The cycle
then repeats from step 4.

7. It 1is possible for a user program to send
commands to the 7/32. These are treated
similarly to data records. However, SKOTCL
recognizes that they are commands, and rather
than printing them, it requests task FECPT
(front-end command from port). FECPT will call
COMMAND to process the command. It will then
generate a protocol record to return the reply to
the Cyber mainframe, and requests task MSGCP to
send the protocol record.

8. Protocol records from control ports (MANAGER and
ARGUS) are handled similarly to data records.
However, routine 1ISR65 on the 7/32 recognizes
that they are protocol records, and rather than
starting task SKOTCL. it starts task CTLPT. This
task processes all protocol records from the
Cyber mainframe.

9. If the connection is port-to-port (MERIT inbound)
‘ rather than port-to-socket, ISR65 will start task
.PPIOCL, rather than SKOTCL.

The other complicated chain. of -events happens when a
user dials in, or hangs .up.

4.5.1.2 Dial-in,

(See also section 4.11)

6SM #124.1 - FREND

Page

22

1.

Before a phone will answer, task SKINIT must run
on the socket. This sets up many fields in the
socket, and enables interrupts on the line. It
also unbusies the 1line. SKINIT is run during
initialization on all sockets.

When a wuser dials in., the PAL connected to the
phone 1line will generate an interrupt. This
causes control to transfer to PALISR. PALISR
will sense that carrier is present, and will
start task SKCARR with a delay of .25 seconds.

SKCARR runs, and statuses the PAL to ensure that
carrier is still present. This 1is to guard
against noise on the phone line.

For auto-baud rate lines, task SETBD is started
with a 10 second delay. This is the auto-baud
rate default timeout task.

If a character ‘is entered before SETBD runs,
PALISR will calculate the baud rate based on the
received character. It will then start task
SKOPEN. If no character is received before SETBD
runs, SETBD will establish the default baud rate,
and then start task SKOPEN.

SKOPEN does some additional setup on the socket,
and requests "SOCMSG" tasks to return the system
header and the 1login message to the socket. It
then requests task OPENSP to open a connection to
MANAGER.

OPENSP finds an available port, and 1links the
socket and port together. It then links the data
port to the control port for MANAGER (port
PTN.MAN). Finally, OPENSP generates an FP.OPEN
protocol record, and requests task MSGCP to place
that record on the input circular stack for the
MANAGER control port.

MANAGER will receive the FP.OPEN protocol record,
and locate a free user table. It then associates
the user table with the port, and returns an

~ FP.ORSP protocol record to the 7/32, indicating

that the open was accepted. MANAGER then starts
LOGIN on the -Cyber mainframe.

At this point, the job is running in the
steady-state condition.

4.5.1.3

1.

10.

6SM #124.1 - FREND
Page 23

ang- i

‘On a hangup or disconnect, the PAL interrupts the
7/32. PALISR gains control, and the PAL status
indicates that carrier is not present. PALISR
then starts task CLOFSK (close from socket).

CLOFSK will delink to socket from the port. It
requests task SENDCP to send an FP.CLO protocol
record to the 7/32.

CLOFSK then clears the socket, and disconnects
and busies out the phone 1line. Task SKINIT is
started with a five second delay (unless the bus
through which the device 1is connected has been
turned off, indicating that users should not be
allowed into this socket again). After SKINIT
runs, another user may dial in. Note that CLOFSK
has not cleared or released the port, because
MANAGER does not know that the user is
disconnected until it receives the FP.CLO
protocol record.

SENDCP places the FP.CLO protocol record on the
input stack of the MANAGER control port.

MANAGER receives the FP.CLO, and starts LOGOUT on
the user.

Once LOGOUT has completed, the mainframe will
have no more activity with this user, so the port
can be released. MANAGER sends an FP.CLO
protocol record to the 7/32.

CTLPT will process the FP.CLO protocol record. It
simply starts task CLOFPT (close from port).

CLOFPT will clear the fields in the port, and
mark it as being available for use.

If the wuser has logged out without hanging up,
the process starts at step 6. However, once
CLOFPT runs, it finds that the port is 'still
connected to the socket. Therefore, CLOFPT
starts CLOFSK to disconnect the user.

CLOFSK will clear the socket, disconnect and busy
out the line., and request SKINIT with a 5 second
delay. Since CLOFPT has broken the connection
between the socket and the port, CLOFSK does not
worry about any data ports.

65M #124,1 - FREND

Page 244

4.5.2

Batch printer subsystem,

4.5.2.1

Steadv state condition,

In the steady state condition. a printer is
connected and printing a job. The printer socket
is logically connected to a port. The data flows
from an output file on disk into MANAGER.
MANAGER calls in 1FP (via CIO) to write the data
over a channel and the DMA into a port in the
7/32. Within the 7/32, data flows from the port
to the printer socket. The following is a brief
summary of data flow for a printer within the
T7/32.

Task PRINT calls subroutine NEXTLIN to get a line
to print from the port. NEXTLIN discovers that
there is no data in the port, and requests task
SENDCP to transmit an FP.0OTBS protocol record to
the mainframe, and drops out.

Task SENDCP transmits the FP.OTBS protocol record
to the mainframe over MANAGER's control port.

MANAGER sees the FP.OTBS, does a read from the
output file on disk, and does a front-end block
write request.

1FP moves the data from MANAGER's field length
into the 7/32 port connected with the printer,
and interrupts the 7/32.

Interrupt routine ISR65 processes the interrupt
from the mainframe, and requests task PRINT to
process the data (the port is now full).

Task PRINT begins execution, ensures that the
printer is not currently busy, and calls
subroutine NEXTLIN, the processor for printer
state PRNT (printing a job).

Subroutine NEXTLIN unpacks the next print line

_ from the block data buffer into a line buffer,

determines the character set of the data. and
returns the buffer address to PRINT.

PRINT then calls subroutine STARTOT to start up

the printing of the new line.

STARTOT sets up the CCB fields to point to the
buffer of data to print and the correct
translation table, and Qallslsubroqtine PRCCTL to

10.

11.

12.

13.

14,

15.

4.5.2.2

1.

6SM #124.1 - FREND
Page 25

do carriage control processing.

PRCCTL translates the first character of the line
into the correct printer function code. puts the
function code into a buffer., and sets the CCB to
point to the carriage control code buffer.

STARTOT then simulates an interrupt on the
printer in order to start up the auto-driver
channel, and then drops out.

The auto-driver channel outputs the contents of
the carriage control buffer, and then upon
hitting end-of-buffer invokes interrupt routine
I#PRINT (in PRTISR).

I#PRINT sees that the carriage control buffer is
spent, and returns it to the system and begins
outputting the rest of the print line by setting
the proper CCB fields.

The auto-driver channel outputs the entire
contents of the print line buffer, and then upon
hitting end-of-buffer once again invokes I#PRINT.

I#PRINT sees that the print line buffer is spent,
returns it to the system. and requests task PRINT
because there is no longer anything to print.
The flow begins again at step 6.

Connecting the printer,

When the printer is off and idle, the socket is
not connected to a port, and interrupts are
disabled on the device. The printer state is OFF
(printer off and idle).

When the system first comes up (or when the ON
front-end command is issued). task OPENSP is
requested to connect the socket to a port. The
state is set to WIOP (wait for open).

" Task OPENSP finds a free port, links it to the

socket., and requests task MSGCP to send an open

- request to’ the mainframe.

‘Task MSGCP sends an FP.OPEN protocol . to the

mainframe over MANAGER's control port.

MANAGER sets up fields for the printer and sends
an FP.ORSP open response back to the 7/32.

6 #124,1 ~ FREND
Page 26

6.

4.5.2.3

Task CTLPT sees the. open response for the
printer, sets the state to WIPR (wait for print
job), and requests task GETPRT.

GETPRT requests task MSGCP to send an FP.GETO
output file request to MANAGER, and sets state
WINP (wait for output request response).

Task CTLPT sees the negative FP.NEWPR response
from MANAGER, sets state WTPR, and requests task
GETPRT with a 2 second delay. Flow continues at
step 7.

§§gr§;ng a new print job.

GETPRT requests task MSGCP to send an FP.GETO
output file request to MANAGER (as above).

CTLPT sees a positive FP.NEWPR -response, moves
information (such as job name and page limit)
into the socket, sets state PREP (pre-print) and
requests task PREPRT.

PREPRT sets up working-storage fields in the
socket, enables interrupts on the printer, sets
state BANR (printing banner pages), and requests

-task PRINT.

PRINT sees state BANR and calls subroutine BANR,
the banner page processor.

BANR returns a new line of the banner page each
time it is called, updating the banner page line
number in the socket. Each line is returned in a
buffer which is printed in the manner of the
"steady state" example above.

BANR is finally called for the last line on the
banner page, and either sets state PRNT if there
is no dayfile to print (and we have reached the
steady state), or sets state DAYF to process the
dayfile. .

PRINT calls subroutine DAYF for each line of the

dayfile.” State DAYF is much 1like state PRNT,
with the major exception being that the data
beginning in column two of each line is shoved
over to the right side of the page by inserting a
bunch of blanks.

DAYF ' sees that the print file has hit

end-of-record (signifying the end of tpe dgyfile))

4.5.2.4

6SM #124.1 - FREND
Page 2T

and sets state PRNT (and we have hit the steady
state example).

Ihe end of a print job,

Task PRINT, running in state PRNT, sees that EOI
has been hit on the print file, and sets state
EOI.

Task PRINT calls subroutine EOIPROC. the
processor for state EOI. If the copies count is
non-zero, the state is set to COPY (which will
print a message, rewind the output file, and set
state PRNT again). If the copies count is zero,
the state is set to ACCT (doing accounting).

Task PRINT calls subroutine ACCT, the processor
for state ACCT. The subroutine formats an
FP.ACCT accounting message (containing
lines/pages print), sets state WTFAC (wait for
accounting response), and requests task MSGCP to
send the message to MANAGER.

Task CTLPT sees the FP.ACCT response from
MANAGER, moves fields from the response into the
socket, sets state ACMS (accounting message), and
requests task PRINT.

Task PRINT calls subroutine ACMS in state ACMS,
which formats a message to print containing the
accounting information, and sets state DONE.

Task PRINT calls subroutine DONE to process state
DONE. If the printer is still logically ON, the
state is set to WIPR and task GETPRT is
requested. Flow continues in step T of
"connecting a printer", above. If the printer
has been turned logically OFF, flow continues in
step 1 of "disconnecting a printer", below.

n a inter

,The printer is‘diséonnected either after finding .

itself logically OFF after finishing a print job.
or after the REW front-end command is issued to
rewind the Jjob currently printing. In either
case, we .begin in state DONE.

Task PRINT calls subroutine DONE, the processor

. for state DONE. The subroutine sees that the .

6SM #124,1 - FREND

Page 28

printer is 1logically OFF, and calls subroutine
SENDCLO.

3. Subroutine SENDCLO requests task SENDCP to send
an FP.CLO close request to MANAGER, and sets
state WICL (wait for close response).

4, MANAGER responds in kind with an FP.CLO close
response, which is seen by task CTLPT. Task
CTLPT requests task CLOFPT.

5. Task CLOFPT breaks the port-to-socket connection
and requests task CLOFSK.

6. Task CLOFSK disables printer interrupts, resets
the CCB and socket, and sets state OFF. All
activity then ceases.

4.6 Connections and the ID.

A connection is simply a link between ports and sockets. Each
socket has 2 fields to indicate other ports or sockets to which
it may be connected. Each port has one field to indicate the
other port or socket to whiech it can be connected. The
connection number is the number of the port or socket to which
the structure is connected. The connection type specifies
whether the connection number is that of a port or socket.
Connections are established by tasks OPENSP (socket to port) and
OPENPP (port to port). There are currently no routines to open
socket-to-socket connections.

The ID is a unique number which is associated with each
connection chain, that is, with each unique user. When a user
dials in (or a print job begins), an ID is generated and ASSIGNED
to the socket for the communications line. Any port to which the
user subsequently connects is assigned the same ID. Whenever a
port and socket, or a port and a port, are connected, both sides
of the connection must have the same ID. Most tasks which deal
with two sides of a connection check to ensure that the ID'S
AGREE. Any task which will deal with a specific port or socket
usually is also called with the 1ID which belongs to that port or
socket. The task then checks the ID in the table with the ID

"~ with which it was called, and generates an error if they

disagree.” 'This prevents a task from operating on a port or
socket if the original owner has for some reason disappeared. It
is especially important for delayed tasks, which may run quite a
while after -they were originally called (i.e. After plenty of
time has transpired to allow the user to log out or hang up).
The ID also provides a very important check on the internal
consistancy of the operating system.

ID's are generated by OPENSP and OPENPP through the S=GETID
supervisor call. The ID is a 15 bit number assigned sequentially

b.7

6SM #124.1 - FREND
Page 29

and circularly starting with 4. The ID 1 is reserved for memory
blocks assigned to the timer queue. and the ID 2 and 3 are
reserved for memory blocks assigned to buffers. These are used
by the memory MANAGER.

Initialization,

4.7.1 ZTIransfer of control,

The FREND transfer address points to INITIAL. Therefore
INITIAL receives control immediately after MANAGER loads FREND
into the 7/32. At this point, INITIAL sets the
initialization-complete flag (in the LMBI) to =zero. It then
performs all necessary initialization. At the completion of
initialization, the initialization-complete flag is set to 1,
signaling MANAGER that FREND is ready to run. INITIAL then
transfers control to the FREND MONITOR. MANAGER waits 20
seconds for FREND initialization to complete. After that time,
MANAGER will declare the 7/32 dead.

INITIAL sets up all FREND system tables and pointers. It also
sets up the interrupt pointers.
The following tables are established:
1. Low core PSWS, locations 0 - CF.
2. All device interrupt addresses.
3. All CCBS (1/socket)
4. The task request stacks (low, med, and high)
5. The LMBI pointers (PW.XXXX)
6. The MISC table (date/time, version)
7. The FPCOM table (1FP/FREND communication)
8. The 3 buffer circular lists (80 char buffers,
240 character buffers, and the release list).
9. The bus status table.
10. All sockets.
11. All ports and the port circular buffer lists.
12. The memory allocation table and
allocatable memory.
13. The timer queue (within allocatable memory);.

Note that all 7/32 tables are built at initialization ,
time by this routine. There are no assembled-in
"~ tables. . ' : o

"4.7.2 Device injtialization.

INITIAL uses the device descriptions in the DEVICE
deck. This deck describes all peripherial devices
connected to the 7/32. For each device, INITIAL takes

6SM #124.1 - FREND

Page 30

the appropriate action, as described below:

Bus Switch.
The bus switch reservation is requested.
If reservation is not granted within 5 seconds,
the bus will be marked as "off" in the bus status table,
and a message will be issued to the console teletype.

PAL (line adaptor).
For each PAL, a socket, CCB, and port is allocated.
The socket and CCB are permanently associated with the
device. The port becomes one of the pool of available
ports.

Console TTY.
Treated the same as a PAL.

Printer.
Treated the same as a PAL.

PIC and LFC (clocks).
ISR addresses are setup. The PIC is started when the
timer queue is initialized.

4.7.3 LMBI table creation,

The LMBIPT macro designates certain tables as fixed size.
These tables all occur
at the beginning of the LMBI, before any dynamic tables.
The PW pointers for these tables are constructed by INILMBI
directly from information in the LMBIPT macro. These
tables are:

FPCOM (7/32 / 1FP intercommunications table)

MISC (date/time and version).

BF80, BF240, and BFREL (buffer lists).

BANM (banner message).

LOGM (login message).

Following these tables, INITIAL builds all dynamic tables.
Since these tables depend on each other, their order should
be maintained: :

.80cK socket table. A socket entry is established for
" each entry in the device table of type TTY PALLS,
PALHS, PR96, or PR6A.

DVSK device to socket index. This table is big enough for
the maximum device number in the device table. Hence
it is not built until the device table is scanned in
its entirety. Routine INISOCK then plugs the
socket number in, indexed by the device number.

6SM #124.1 - FREND
Page 31

PORT port table. There is one port for each socket,
plus one for each DT.PORT entry in the device table.
This table follows DVSK.

PTBUF port buffers. All port circular lists are carved out
of this table. It is allocated by INIPORT as each
port is initialized, and immediately follows the port
table.

MALC memory allocation table. All remaining memory after
above tables is divided into allocatable blocks by
INIMEM. The MALC table contains 1 halfword for
each allocatable block, indicating the availability
and ownership of that block.

ALLOC allocatable memory. This immediately follows the
MALC table, and consists of all core left after the
above tables have been built. Each allocatable block
is L.BF80 (84) bytes long. Blocks are used
for buffers and the timer queue.

4.8 Qpen processing.

Open consists of the following tasks:

1. OPENSP - open socket to port.

2. OPENPP - open port to port.

3. OPENPS - open port to socket (not implemented).
4. OPENSS - open socket to socket (not implemented).

These tasks are responsible for establishing all
FREND connections.

4.8.1 P - _open socket t ort,

This routine opens a connection to the mainframe for all
incoming phone calls. When a carrier is established, SKOPEN is
initiated. It starts OPENSP, which finds an available port,
and links the socket to the port. If no port is found, a
- message 1s returned to the socket, and CLOFSK is started to
disconnect the socket. OPENSP ‘also opens a connection to ARGUS
‘for the NETCNT command. It then starts SKOPEN to open a.second
connection . for the socket (already connected to MANAGER) to
ARGUS. If this connection can be opened, the MANAGER
connection is pushed down to the second connection position in
"the socket, and the ARGUS connection becomes the primary
connection. If the connection cannot be opened, a message is
returned directly to the socket. o :

6SM #124.1 - FREND

Page

32

4.9

4.8.2 OQPENPP - open port to port.

This routine opens a port to port connection. It is initiated
by ARGUS for incoming MERIT connections. (It is also used by
the stimulator to initiate simulated interactive users). ARGUS
sends an FP.OPEN request over its control port. This causes
the CTLPT task to initiate OPENPP. OPENPP will find 2 free
data ports, and connect them together. It then returns an
FP.ORSP response to ARGUS, indicating the port number on the
ARGUS side of the connection. It sends an FP.OPEN request to
MANAGER, indicating the port number on the MANAGER side.

4.8.3 Qpen errors,

If an open cannot be made, the error is always returned to the
open initiator. For OPENSP, the open comes from the socket.
Therefore, any open error returns a message to the socket
(assumed to be a user terminal) and no open takes place.

For OPENPP, the open comes from a control port. Therefore, any
open error returns an FP.ORSP (open response) to the
originating control port, indicating the reason for the reject.
(note that a successful open also returns an FP.ORSP. with a
success code)

Close processing.

The CLOSE routine contains all close processing for various
connections. This consists of the following tasks:

1. CLOFPT - close from port.

2. CLOFSK - close from socket (disconnect).

Each close task is concerned only with the specifie
side from which it was called. Thus CLOFPT only
closes out the port side, while CLOFSK only closes
out the socket side. These tasks follow the

same general outline:

1. Check the ID to be sure it matches.

2. Break all connections by clearing the connection
numbers in the port/socket and all,port/sogkets
to which it is connected. ' :

3. Reset the port or socket.

Additionally, it is necessary to allow for the following
conditions:

1. A disconnect, which is a CLOFSK, should also cause the
port to be closed out, since the connection is
broken. This is done by having CLOFSK send
an FP.CLO protocol record to the control port of any
port to which the socket was connected.
This starts a chain of events whereby MANAGER

6SM #124.1 - FREND
Page 33

logs out the user, and returns an FP.CLO request

back to the 7/32. 'This causes the 7/32 to start

a CLOFPT. which will zero out the port (which is no-longer
connected).

2. A FP.CLO from the mainframe, which causes a port to be
closed out, can also ask for the line to be disconnected.
In this case, CLOFPT will initiate a CLOFSK task.
CLOFSK then will eventually disconnect the user.

Disconnecting the line:

The line (socket) is disconnected (CLOFSK is started) if the user
logs out and there are no secondary connections from his socket.
The line is not disconnected if a LOGIN or NETCNT is rejected,
and there is no secondary connection from his socket. A line is
never disconnected if there is a secondary connection--it simply
becomes the primary connection.

The following is the chain of events:

User disconnect:

1. PALISR calls CLOFSK.

2. CLOFSK breaks all connections.

3. CLOFSK sends FP.CLO to control port for all connected

ports.

4, CLOFSK resets the socket and calls SKINIT with
a five second delay.

5. MANAGER receives the FP.CLO. This causes it to put the
Job into LOGOUT.

6. When the LOGOUT completes, MANAGER sends an FP.CLO to
the 7/32.

7. The 7/32 starts a CLOFPT to close out the port.

8. CLOFPT resets the port. Since the port is not
connected to anything, CLOFPT ends.

User-initiated LOGOUT:

. When LOGOUT finishes, MANAGER sends FP.CLO to the 7/32.
2. The 7/32 starts CLOFPT.
3. CLOFPT breaks the port connection and resets
the port.
. 4. If the port was connected to a socket,.CLOFPT starts
CLOFSK.
5. CLOFSK closes out any additional socket connections
as described above. Then it disconnects :
the user and resets.the socket.
. CLOFSK then calls SKINIT with a five second delay..
7. If the port was connected to .another port, CLOFPT
sends an FP.CLO to the associated control port.

—_

Note - CLOFPT will recall itself once with a sufficient
delay to allow any outstanding output to be sent to the
socket. The SKSWOT flag in the socket is set to ensure
that the output gets printed. Any output left after

6SM #124.1 - FREND

Page 34

the delay is lost.

CLOFSK will recall itself once with an 8 second
delay if all output at the socket has not been sent.
After that time, the line is disconnected and any
remaining output is discarded. This is necessary
to prevent the socket and line from being tied up
indefinitely.

Command processing.

FECMD is the interface between a port or socket
and the front-end command processor (COMMAND) .
FECMD sets up and calls COMMAND, and then
generates an appropriate error response.

There are two tasks for front end commands:

1. FECPT - front end command from a port.
This task expects the first character of the buffer
to be the start of the command. It returns any
error indication by an FP.FCRPY protocol record
to the control port.

2. FECSK - front end command from a socket.
This task expects the first character of the buffer
to be the the front end command character.
It returns any error indication as a message directly
back to the originating socket.

COMMAND contains all the actual command processors
for the FREND commands. PRFEC is the routine which is
called to process the command. This is called by 2 tasks:
FECSK - front-end command from socket, and
FECPT - front-end command from port.
PRFEC processes the command and returns an error code to the
calling task, which either return an error code or an
error message.

COMMAND calls upon several utility routines located in PARSER.

These are: GNELM - get next element from the command line,
SEARCH - search a special table. :

Also used are several of the utility routines in MISS.

GNELM extracts the "next" syntactical unit from a command.
" This'may be a number, an alphanumeric string, ‘a
delimited character, or some other single character.
GNELM returns the element's position and length, its
type, and its value (e.g. The binary representation
of a number.)

~SEARCH quick sequential search of the standard

6SM #124.1 - FREND
Page 35

command table format genrated by the

TABLE macro.

Returns the value associated with a given table
entry.

These routines are designed to be called from background
tasks, are fully interruptable, and use register set F.

Typical use:

When SKINCL detects a front-end command. it initiates FECSK to
process it. This task begins by locating the beginning of the
command, then calls SEARCH to find out if the command is defined,
and if so, where the command processor is 1located. The command
processor is invoked directly. The command processor parses the
command, making repeated calls to GNELM to extract the individual
elements. When alphanumeric parameters are encountered, the
processor may call SEARCH to find their meaning. Other types of
elements are accompanied by their meanings (values) on the return
from GNELM.

rin hone line.

Answering a phone line is handled by a set of tasks in SKOPEN.
These tasks are SKCARR, SETBD. and SKOPEN.

Simplified process:

1. Socket in state IN.IDLE. Phone rings, and task
SKCARR initiates automatic baud rate detection.

2. Socket in state IN.AUTO. User types a character,
and I#PAL sets baud rate, terminal type.

3. Task SKOPEN initiates connection to mainframe port.

4., Socket in state IN.IO, accepting input through PALMIN.

Detailed description:

To enable a PAL device so that we can accept incoming calls,
INITIAL calls SKINIT. SKINIT is also called to re-enable a line
after we hang a user up. SKINIT resets the socket to the idle
state, and sends commands to the PAL device.. These commands set
parity off (for auto-baud-detect), drop the busy signal on the
phone line, and enable interrupts.

Once SKINIT has been called, a user can dial up and get a ring..
The ring is automatically answered by the PAL device, because
SKINIT -sends a command to set ‘data terminal ready. When the PAL
device answers the ring, it brings up a carrier, which is
answered by the user's modem.

There may be a gréat many interrupts from . the PAL device during
this process, as the phone rings and various relays in the DAA

bounce around. We .are only interested in the interrupt that

6SM #124,1 - FREND

Page 36

it does the same, but always at 390 baud. .

tells us a carrier from a user is up, so we ignore all others.

Socket byte SKISTA contains the state value for input interrupt
processing. At the time the phone rings, it is state IN.IDLE.
In this state. interrupts are enabled but ignored, unless the
carrier-off bit in the PAL status becomes clear, indicating a
call may have been answered.

When V.SPCOFF goes clear, we want to make sure this is not Just a
momentary carrier-detect. The code at IDLE in I#PAL then
disables further interrupts, sets state IN.WAIT. and requests the
task SKCARR, with a 1/4 second delay.

In state IN.WAIT, interrupts should stop coming - any that occur
are ignored.

1/4 second 1later, when SKCARR runs, it first checks to see if
V.SPCOFF is still clear in the PAL status. If it is not, the
carrier-detect was only momentary. and there is no valid call.
In this case. SKCARR just resets the socket state to IN.IDLE,
re-enables interrupts, and drops out. Back to square one.

If the carrier is still up after 1/4 second. we think we may have
a call. The next step is to establish the baud rate of the
terminal. If it is not an auto-baud socket, this 1is easy -
SKCARR just sets the proper baud rate and calls SKOPEN. For
auto-baud 1lines, SKCARR checks the "reverse channel receive"
status bit from the device, which has been wired to indicate
1200-baud operation. If this 1line is up, it works just like a
1200 non-auto baud line. If this line is not up, SKCARR sets the
state to IN.AUTO, and requests task SETBD with a 10-second delay.
This task will set the rate to the default (300 baud) if the user
does:- not type a character to set it first. (For fixed-rate
lines, SKCARR calls SKOPEN, which will open the connection.)

State IN.AUTO is ended either by the user typing a character
which determines the baud rate, or by SETBD after the timeout.
In IN.AUTO, interrupts are processed by the code at AUTO. If the
carrier drops during this time, the state goes to IN.OFF, and
CLOFSK is run to reset the socket and busy out the phone line.
Eventually SKINIT will run and re-enable the line.

When the user types a character to set his baud rate. AUTO reads
the character and looks it up in a table, to see what baud rate,
if any, is indicated.. If the character does not define the baud'

rate, it is ignored.

When AUTO knows the user's baud rate..it .calls SKINTITY to set the .
terminal attributes in the socket, then SKINCD to send the baud
rate to this PAL device, and then SKOPEN to request the
connection to the mainframe.

If SETBD runs before the ﬁser has typed his baud-rate character,

.

4,12

6SM #124.1 - FREND
Page 37

After the baud rate is determined, we are ready to connect the
socket to a port. SKOPEN takes care of this. SKOPEN first
checks to make sure the line is still up, (and starts CLOFSK if
it is not) then it sets state .IN.JO and sets the interrupt
service routine vector to PALMIN. This is the only way a device
gets to the normal 1I/0 state. Finally, SKOPEN requests OPENSP,
which will attempt to make the port connection.

Auto-baud rate determination:

(See also task SKCARR, which sets this state and requests task
SETBD.) For baud-rate detection, the PAL device is pre-set (by
subroutine SKINIT) to operate at 110 baud. The user's terminal,
however, may be set to 110, 150 or 300 baud. When it sends
CTRL-X or carriage return, the data will be received as a
character which will uniquely determine the baud rate his
terminal is set at. What the CPU receives was determined by
experimentation, with a terminal set at different baud rates, and
the result is the table T.BAUD. When indexed by the received
character, this table gives the code for the indicated baud rate.
Blank table entries contain the code BL.AUTO (zero), which
indicates the data does not determine the baud rate, and should

be ignored.

If the data received is greater than FO, it always means 300 baud
- 80 the entries for data greater than FO have been omitted from
the table to save space.

Socket output processing,

4,12.1 SKOTCL - socket output control.

SKOTCL initiates all output to a socket. This involves setting
up the device CCB, processing carriage controls., and fetching
the next buffer to be printed. Buffers are removed from all
connections feeding the socket.

SKOTCL has total responsibility for supervising the output

pathway to a socket. - It .is called by anyone who wants to
ensure that output gets sent to a socket. The most important
7 calls ‘are:

. By ISR65, the mainframe ISR , whenever a -line
18 added to.a.port which is connected to a sacket.
SKOTCL is only" called if output is’ not active at
that. socket. : T

2. By SOCMSG, which adds messages to the socket output
stack. SKOTCL is called whenever a message is
added to the stack. and output is not active at
the socket.

6SM #124.1 - FREND

Page 38

3. By OUTISR, the CCB interrupt service routine for
socket output. SKOTCL is called whenever a.buffer
empties, and there is no data in the alternate
buffer. This call to SKOTCL sets up the next line for
output. Since it is time critical (the user is waiting)
this call goes on the high-priority stack.
Because the PALS have a 2 character buffer, there are
2 character times for SKOTCL to start up the CCB again.
Otherwise, a noticable pause will occur.

4. By SKINCL, the socket input control routine, whenever
it adds a line to the port or socket connection.
This restarts any output which had been waiting
because the user was typing in a line.

Control port data: SKOTCL will initiate SENDCP to send an
FP.OTBS (output buffer status) message to a control port,
whenever it removes a line of data from a port buffer, and
there are 0, 1, or 2 lines of output remaining. This signals
MANAGER or ARGUS that it can send more output.

General output philosophy: is done via a CCB. This CCB is
setup by SKOTCL. All CCB interrupts are processed by OUTISR.
These include end-of-buffer interrupts and translation table
routines. All user output is sent in buffer 0 of the CCB. Any
carriage controls are placed directly in the text buffer,
overwriting any header information. CCB buffer 1 is used only
to send delays for CR, LF, HT, VT, and FF. This buffer is
setup by OUTISR on a translate table interrupt for one of these
characters. SKOTCL does not start output wuntil it determines
that the terminal is ready to receive output.
Output is active if:

the CCB is active (V.CBSACT is set)
Output can't be sent if:

output is suspended (SKOSUP is set)

user input is present (SKINCC non-zero)

echo lines override the above considerations.

SKSWOT is a special flag, set by CLOFSK and CLOFPT, which
forces output to be sent regardless of any input data or the
output suspend flag. This ensures that all output gets sent
before the phone is disconnected, and prevents a user from
tying up a line indefinitely by simply suspending output. An
echo line always overrides output suspended and user input
present. The bottom line on the socket output stack is always
checked to see. if it is an echo line. An echo 1line is any
line with the V.DHCECH flag set. Echo 1lines are added to the
bottom - of the socket output circular stack by: : .
PALISR - for input echo while output is printing.
RETIN - for retrieve of typed-ahead input.

SKOTCL is responsible for deciding which translate table will
be used by the CCB. Normally the "transparent” table OUTXLT,
which does not change any code values, is used. When sending

6SM #124.1 - FREND
Page 39

AF or OM data to a terminal in an alternate character set,
however, a special table which is pot transparent must be used.
The address of this table is kept in the socket for any
terminal which has an alternate character set selected.

4.,12.2 OQUTISR - output CCB processing.

OUTISR contains all interrupt processing for the socket output
CCBS. All output to sockets (except immediate echo output) is
sent using the 7/32 CCB (channel command block) mechanism. The
channel command block is basically a channel program consisting
of a description of the operation to be performed. and a list
.of parameters associated with the operation. In this case, the
operation is always a write to a specific PAL device, and the
parameters specify the buffer to use and the number of
characters to send. The 7/32 autodriver channel automatically
transmitts each character until the buffer is empty (or until
specific characters are encountered), at which point an
interrupt 1is generated and control passes to I#CCB (end of
buffer) or a specific character translate routine. For a full
description of the CCB, see chapter 7 of the INTERDATA 32 bit
series reference manual.

CCB output processing routines consist of:

1. CCB ISR, which handles
end of CCB buffer
bad CCB device status
immediate transfer (execute bit clear)

2. Output translate table routines.
These handle transmission of delays for
CR, LF, HT, VT, and FF.
They also handle special processing for right margin.

3. INIOCT.
This routine initializes the output translation
table by inserting the addresses to handle the
special characters CR, LF, HT, VT, and FF.

4., SETRM.
This routine resets the CCB to stop at the current
right margin setting. VCOL, the virtual column,
is also set to the theoretical position the termianl
carriage will be at when the CCB terminates.’

5. DELAY. v o R -
- This routine sets up CCB buffer 1 to send the correct .
" number of nulls, to do the delay after a CR or LF is sent.

6. RMFAKE.
This subroutine subtracts one from the virtual column
number (the projected carriage position at end of buffer)
when a character is sent that causes no carriage motion.

6SM #124,1 - FREND

Page 40

7. DONPC.
This is the main routine for interpretation of non-printing
characters., It calls CKNPC to decide whether the
character must be interpreted, then calls NPCSTR to
generate the string to be substituted, and places the
interpretation into buffer 0, in place of the control
character that is being interpreted.

The output CCB is always setup and initiated by

SKOTCL. The CCB interrupt routines are invoked only for
control characters, which may require delays, interpretation,
or adjustments to the right margin. By manipulating the
buffer byte count, an end-of-buffer interrupt is programmed
to occur when the carriage reaches right margin, and at that
time a CCB interrupt routine sends the CR and LF necessary
to continue on the next line.

Note - since these routines are all run in non-interruptable
mode, the primary coding consideration was speed of execution.

.12.3 Right margin nboce3§ing,

Caution - right margin processing is a complex and highly
interdependent process --be sure you understand it fully
before modifying it.

Special fields:

C.SKRM ~ the current right margin setting.

C.SKVCOL - the virtual column, which is the theoretical
column position of the terminal when the CCB interrupts
at end of buffer.

J.SKATRM - a flag which is set when the terminal carriage is
setting at the right margin.

W.CBLWAO - the actual LWA of the output buffer, as
distinguished from W.CBBOAD, which is the LWA of the buffer
that the CCB is to print.

General mechanism: - ‘ .

Whenever a new line is started by SKOTCL, and whenever a CR is
transmitted, SETRM is called to reset the CCB for the right
margin. SETRM will set the CCB to terminate printing just at
the right margin, assuming that all the characters in the CCB
are printing characters (I.e, . they cause carriage movement).

. Furthermore, . VCOL is set to the -column number-at which the

terminal will be sitting when the CCB terminates printing.
When the CCB terminates, the address just printed is compared
against the LWA of the output buffer. If they differ, then we
assume we are only at the right margin. In this case, the
CR.LF for the right margin return is inserted into the buffer

6SM #124.1 - FREND
Page 41

immediately in front of the next character to print, and the
CCB is reset to resume printing.
Complications:

1. Imbedded non-printables.
Each non-printable leaves the carriage one position left of
what the originally calculated right-margin thinks it
should be. To account for this., whenever a non-printable
is sent, VCOL is decremented by 1. Thus, when the CCB
terminates on end-of-buffer, VCOL indicates the exact
colum position of the carriage. If VCOL is not equal to
the right margin, then a new right margin stop is
calculated.
Printing resumes without sending the CR,LF for the margin.

2. Non-printables after the margin.
Once right margin is hit, we do not want to force a CR,LF
unless the next character would print beyond the margin.
Thus, if the next character after the margin is hit is a
non-printable, the CCB is reset to transmit that character.
However, since we are already at right margin, we want to
leave VCOL=RM, so the SKATRM flag is set.

3. Partial lines and the $ carriage control.
Because the terminal carriage can be at any position when
a new line is started. VCOL is maintained across
line boundaries. When a new line is started, the new
right margin stop is always calculated relative to the
current value of VCOL.

4, Right margin before the first character in the line.
If the last line ended just at the right margin, and the
next line is a continuation line, the CR,LF must be sent
before the first character of the new line. This is done
by first sending a null character, and faking a right-margin
condition.

Key components: .

1. SETRM - this is the routine which calculates
where the CCB should stop, based on VCOL and RM.

2. RMFAKE - this routine adjusts VCOL down by 1 whenver a
non-printable character is sent.

3. HITRM = this section of outisr is entered whenever the
CCB interrrupts on end-of-buffer at the right margin.

4,124 Non-Printing Character Processing.

.NPC 1nter§fetation is done entirely in the output ISR, for both
output and echoed input. Input control characters are always
echoed via a buffer, which allows this to happen.

When -a control character is found in the output buffer, the
translation done by the auto-driver channel causes control to

6SM #124.1 - FREND

Page 42

go to one of the output translation routines in OUTISR.
(NONPT, BSRM, CRDELAY. etc.) Each of these routines first
calls DONPC, which may substitute a string of printable
characters into the output buffer, and bypass normal
control-character processing.

DONPC calls CKNPC to make the decision to interpret a control
character. This is a complex decision, based on the following
things:

1. Whether NPC is on or part (socket flag SKNPC).

2. Whether the CCB is sending a true output buffer or an
input echo buffer (this affects which characters will be
interpreted).

3. Whether the buffer contains an internal system message
(we don't interpret these).

4. Wwhether Ehe control character is a CR or LF for carriage
conrol or right margin generation (these are never
interpreted).

5. Whether the parity bit is set in an input echo buffer
(this prevents interpretation).

If the character is not to be interpreted, the appropriate
processing will be done by the translate routine (adujusting
the right margin, generating delays, etec.)

If the character must be interpreted, ~DONPC calls NPCSTR to
generate the string to substitute for it. This will be a
single character, or a mnemonic enclosed in brackets, or a
string like "<CTRL-X>".

DONPC places the string into buffer zero, overwriting the
character being interpreted, as well as up to 4 characters
before it. If the character is the first one in the buffer,
the entire 4-byte data header will be overwritten. DONPC next
calls SETRM, which will recompute the position of the carriage
at end-of-buffer. and set up the CCB to interrupt at the right
margin.

In ‘the "CTRL" interpretation mode, the string to be substituted
is 8 characters long. This is too big to .substitute for
characters 1-3 of a buffer, since the data header is only 4
bytes long. Therefore these strings are done in 2 parts. .The
first time the character is encountered, DONPC puts only the
first four characters of the interpretation string in the
buffer, and leaves the interpreted character in the buffer. It
sets the "SKNPP2" flag., so that when this character is
encountered again, after the first 4 characters have been sent,

‘the last 4 will be sent. The last 4 characters are placed in-

the buffer so as to overwrite the interpreted character, so no

6SM #124.1 - FREND
Page 43

further interrupts will be generated for this character.

After a string 1is placed in the buffer, an interrupt must be
generated to get the auto-driver channel going again. This is
done by requesting task "SINT". which simply executes a
"simulate interrupt" instruction for the requested device.

4.13 Socket input processing.

PALISR consists of the interrupt service routines for the PAL
input side. There are two ISR's: I#PAL - processes all
interrupts for lines that are not in the normal I/0 state --
either turned off, waiting for a carrier to come up, doing
automatic baud rate detection, or disconnecting. PALMIN -
processes interrupts for lines in the normal I/0 state.

4.13.1 PALMIN - normal input,

This interrupt service routine is called when the socket input
state (C.SKISTA) is IN.IO. We do it this way to avoid an extra
load during the character interrupt, since this interrupt will
burn large amounts of our CPU time. Thus when a character
arrives, we don't have to check the input state to figure out
what the interrupt is about.

In the normal case, this routine does the following:

Check status for a character present.
Read the character.

Translate the character.

Put the character in the buffer.

. Increase the input character count.

. Echo the character.

N EWN -
.

Special conditions are:

- bad status (no character)

- literal-next flag set for character
- special action characters

- buffer becomes full

- echo disabled

The code is written to pass straight through in the minimum

time for the normal case. Special cases are handled in
separate bits of code, following the main 1line.

'4.13.2 Echoing of input.

If output is not active, input is echoed directly by
simply writing the input data directly to the PAL.

6SM #124,1 - FREND

Page U4

If output is active, the data must be saved temporarily
in a buffer. The method is: .
1. If there is no echo buffer, then
get an ‘echo buffer,
insert the character into the buffer,
set the buffer address in SKECBF and add it
to the bottom of the socket output stack.
2. If there is an echo buffer, but the buffer is not
currently being printed by the CCB, then
add the character to the buffer.
increment the byte count in the record.
3. If there is an echo buffer. and the buffer is
currently being printed by the CCB, then
add the character to the buffer,
increment W.CBLWAO (buffer LWA) in the CCB.
4. If the echo buffer is full (240 characters), clear
W.SKECBF. This will cause a new buffer to b
established for the next character. :

Notes:

1. The echo buffer address is pointed to by W.SKECBF, but
the buffer address is always in the CCB or on the
socket output stack. W.SKECBF should never be used as an
address of a buffer to purge - the address should be
obtained only via the CCB or output stack.

2. OUTISR will clear W.SKECBF when it finishes printing the
echo buffer.

3. The echo line is binary. Hence, RM and CC are not
processed. This is necessary to ensure that echoed
data exactly matches the input data. It also prevents
interlock problems when SKOTCL modifies the CCB for
carriage controls.

4. Control characters are always echoed via a buffer, to
allow NPC processing to occur. If control characters
are interpreted, this is done by OUTISR for both
output and echoed input. The parity bit is used as a
flag bit, to prevent interpretation of certain special
echo characters, such as the CR that is echoed for the
end-of-line function, and the backspace echo. PALISR
clears the parity bit from control characters that it
echoes via a buffer, and sets it for these special echo
characters.

4.13.3 Special input characters.

Spécial action'éharactersi'ahe indicated in the maiﬂ'traﬁslate
table by setting bit 0 of the halfword entry. The rest of the
entry contains the index into the socket translate table for

. the character. ' Loading the appropriate byte from the socket

translate table gives the.code for the control function for the

special character. Finally, we index the SKXLATE table by the

T R) T oaw.

6SM #124.1 - FREND
Page 45

control function code, and 1load a halfword address of the
control function processor to jump to.

"Break" is a framing error with a zero character. If the user
is not in binary mode, we ignore it. For binary mode. we clear
the binary input flag and simulate an escape, which will stop
any tape input by MANAGER.

Note: when "break" is entered in binary input, the current
line must be terminated normally. This 1line must be sent to
the port before MANAGER receives the abort. Hence INESC is
placed on the low priority stack, which causes it to run after
SKINCL has placed the current input line on the port. The
processing for CR is used to close off the current line.

4.13.4 SKINCL.

SKINCL processes a 1line once it is passed to it by the socket
input ISR SKINCL is called only by the PAL's input ISR. It is
called whenever the input ISR has received an end-of-line (CR),
and has a fully assembled line. This line is passed to SKINCL,
and is subsequently ignored by the ISR.. SKINCL decides how to
process the line, based on its type. and the socket connection:
1. If the line begins with the front-end-command

character (but the second character is not the same).

SKINCL passes the line directly to FECSK, to

process the command.

2. If the line had 2 consecutive command characters, the
first one is deleted, and normal processing continues.

3. If the socket is connected to another socket, SKINCL
passes the line to SOCMSG, which will send it
directly to the connected socket.

4. If the line is connected to a port, SKINCL first checks
for the special typeins *EOF, *EOP, *EOR, ®EOS,
#EORnn, and *EOSnn.

5. The line is then added to the port circular input
list via the ADDPORT routine.

6. If the port is now full, "INPUT FULL" is returned to
the socket via SOCMSG. . ‘ A
If the port was full, the line is discarded, and
"INPUT LINE DISCARDED" is returned to the socket.
If the port is not full, but reader is on, only
a DC3 is returned by sending it directly to the device.
If the port is OK. SKOTCL is requested to wake up
any output which was waiting for the :input to finish.

Note - SKINCL is the only.routing whieh_pagdles completg

6SM #124.1 - FREND

Page 46

b1y

4.15

input lines.

PRIOCL - port-to-port input/output.

Transfers of data on a port-to-port connection are needed
whenever the mainframe sends a line to a port, or takes a line
from one. PPIOCL 1is called in either event, and it always
transfers data from the port it is called to to the other port of
the connection.

Example: consider port A, which is connected to port B. When
the mainframe sends a line to port A, it also sends a HEREIS
command for that port, to the 7/32. When the 7/32 receives the
HEREIS, it knows that port A has output data, and PPIOCL is
requested at port A. PPIOCL will then transfer one line of data
from port A to port B.

When the mainframe takes the line from port B, it sends an ITOOK
command to the 7/32. The 7/32 then starts PPIOCL on port A.
This call may result in no action, if port A is empty. However,
it may be the case that port B has filled up with port A's
output, and this task is needed to move more output from port A.

- socket initialization

SKINIT consists of a set of routines which are used to initialize
various aspects of a socket. These routines are:

SKINIT: this is a task which is run at initialization time (by
INITIAL), and 5 seconds after CLOFSK disconnects (and busies out)
a line. It initializes the socket and PAL to answer a call (data
terminal ready is raised) and sets up the socket default
terminal type and associated defaults. The socket is placed into
IN.IDLE, where it waits until carrier detect appears. Note:
SKINIT| will ignore any socket which does not have its enable
flag (SKSENB) set.

SKINTTY: this subroutine sets wup the socket defaults for a
specified terminal type. These defaults are currently parity,
CR/LF/HT/VT/FF delays, and right margin.

SKINTLT: this subroutine sets ub,the socket translate table for.

" special characters.

SKINCD: |, this subroutine sends commands to the PAL to setup the-
proper parity. character size, and "baud rate, based on values in
the socket.

SKINIT also contains 3 important tables:
1. SKTT = default values for each different terminal

type.

6SM #124.1 - FREND

2. TTABLS - the default terminal type for each
terminal baud rate.

3. DVSK - the socket address for each PAL device,
indexed by the device address.

It is started by CTLPT upon receipt of an FP.CPCLO
protocol record.

4.16 Abort processing,

INESC contains 2 tasks which handle escape (abort)
processing on a connection.

INESC is invoked by the socket input ISR (PALISR)
when it receives an escape. INECSC
will do the following:

1. Check the socket connection. If not
connected to a port., it does nothing.

2. If connected to a port, all pending output in the
port output stack is discarded unless the NTA
(no-throw-away)
flag is set. This makes ESC immediately abort all
pending output.

3. An FP.ABT control port protocol record is sent to the
associated control port. This tells MANAGER or ARGUS
that the user has sent an ESC.

No input is discarded., since the ESC may have terminated
autoline numbering or READPT, and the pending input
is valid.

PPESC - port-to-port escape.

PPESC is invoked by the control port record precessor

(CTLPT) when it receives an FP.ABT from ARGUS,

which is an abort from a network user. PPESC does:

1. Check the ID of both ports.

2. Purge all NTA data in the port output stack.

3. Purge all NTA lines in the input side of

- the source port (which corresponds to the output side

of the destination port)

4. Send an FP.ABT control port protocol record to the,
control port associated with the destination port.

4,17 Switchable Bus processing.

Page 47

6SM #124,1 - FREND

Page 48

4.17.1

4.17.2

4.17.3

niti et-

At initialization time, FREND grabs all the bus switch
reservations it can. Busses which cannot be reserved are
divided into two categories, switchable and
non-switchable. Because a non~-switchable bus which is rot
reserved at initialization time can never be assigned to
this FREND, all devices connected through this bus are
ignored. ("Ignoring" them, in this case. means setting
their interrupt addresses to I#NODEV and their DVSK
addresses to 0, and not creating any sockets for them.) A
switchable bus, on the other hand, may later be assigned
to this CPU even if it cannot be reserved now. so sockets
are set up for devices connected through such a bus.

Turn a bus o

To turn a bus off (using the BUS command), the bus is
first marked as logically off by clearing C.BSON in the
bus status table (BST). Then subroutine OFFDEV is called
to deal with devices on the bus. For interactive sockets,
a CLOFSK task is requested for printers, the FECSK
task is used to simulate a "OFF,XX" command. The CLOFSK
task will look at the bus and, seeing that it is off, will
not start up a SKINIT task on the socket, so that phone
lines will be 1left busy. Finally, task RELBUS is
requested with a half-second delay.

RELBUS issues a non-fatal error message for all devices on
this bus which still have the SKSACT (socket active) flag
set. Then it drops the bus reservation and clears the
"bus reserved" (C.BSRES) flag in the BST.

Turning a bus on.

Before doing anything else, the command processor checks
C.BSRES to be sure that the bus reservation is not already
held. Assuming the reservation is not held, subroutine
GETBUS is <called to try to get it. If the bus switch

cannot be reserved (which probably means that another 7/32
holds the reservation) the command processor returns an.
error. . If the bus is successfully reserved, GETBUS will
set both the "bus reserved" and the "bus on" flags,

C.BSRES and C.BSON.

“Subroutine ONDEV requests tasks to initialize devices om

the bus. SKINIT is requested for interactive sockets, and
the FECSK task is used to simulate an "ON,XX" command for
printers.

6SM #124.1 - FREND
Page 149

4.18 SENDCP - control port records to the mainframe,

SENDCP consists of 3 major portions:

1.

SENDCP task, which issues a subset of FP. Messages

to control ports. '

Allowable messages are INBS, OTBS, CLO, ABT, STAT.

SENDCP constructs the FP.XXXX protocol record based
on the current status of the port.

MSGCP task, which issues a specified buffer

to the control port.

The entire FP.XXXX protocol record, fully formatted,
is supplied to MSGCP, who simply adds it to the
control port.

ADDPORT, a subroutine for issuing any message
to a port.

ADDPORT is the only routine which should be
used to add input lines to a port.

It is used by SENDCP, MSGCP, SKINCL. PPIOCL.

4.18.1 FEP,QIBS - need-data processing.

The "need-data" handshaking scheme between FREND and the
mainframe is complex enough to warrant a separate
explanation.

The FP.0TBS protocol record is used by FREND to tell
MANAGER the state of an output buffer. It consists of a
count of free buffer slots. When the number of ugsed
buffer slots goes below a certain level (the "threshold"),
FREND will send the OTBS record to 1indicate to the
mainframe that more data is needed. The mainframe will
respond by sending the data via 1FP to the port.

It is important that this communication be synchronized--
namely, that only one OTBS be sent per data transfer. If
this is not the case, and an extra request for data is
sent, tne mainframe will fill the port in response to the
first request, and then attempt to do it again in response
to the second. In addition, no OTBS can be sent (or even
formatted to be sent) while 1FP is actually filling the
port, since the count of free entries 1is not going to be
valid. - : '

For these reasons, two flags were defined in the port:
PTXFER - set when 1FP is transferring
data into the port .
PTOTBS - set when a task has reguested that
an OTBS be sent

Let's look at an example of how this mess works. Suppose

6SM #124.1 - FREND

Page 50

a Job is printing on a front-end printer. Task PRINT, via
subroutine NEXTLIN, is removing 1lines from the port and
printing them. When the number of lines in the port is 2
or less (this is the threshold for printers), PRINT sets
the PTOTBS flag (to indicate that a need-data is going to
be sent for the port) and requests task SENDCP to send the
OTBS. A short while later, PRINT again sees less than 2
lines in the port (it's printed another line), but sees
the PTOTBS flag set so it does not request another SENDCP.

Meanwhile, MANAGER gets the OTBS, reads some more data
from disk, and calls in 1FP to transfer it. 1FP, upon
beginning the transfer, sets the PTXFER flag (to indicate
transfer in progress) and clears the PTOTBS flag (to
indicate that the OTBS has been responded to). If SENDCP
runs during the data transfer, he will see the PTXFER flag
set and will recall himself until the transfer is
complete--this ensures that an invalid slot count is not
sent.

There is one additional hitch to all of this--mainframe
control port programs (such as MANAGER) have the ability
to request an OTBS in order to determine the state of a
port. These requests must be responded to, even if the
port is above threshold. If the port is below threshold,
a requested OTBS must be recognized as a need-data as
well. All of this is handled in the following manner in
SENDCP:
If the port is in a need-data condition, the OTBS is
always sent (the PTOTBS flag has been set by the
calling routine).
If the port is not in a need-data condition, the
PTOTBS flag is c¢leared (since the OTBS will not
result in a data transfer) and the OTBS is sent only
if it was requested by the mainframe.

The following is a short summary of how this handshaking

scheme is handled in each component of the system.

4.18.1.1 MANAGER,

MANAGER also knows the threshold levels for the
various types of ports (connected to interactive
sockets, printer sockets, and. ports) and
recognizes' only OTBS's below threshold as
requests for‘data.

4.18.1.21 FP.

1FP clears PTOTBS and sets PTXFER when beginning
a front-end transfer for write and rewrite orders
and clears PTXFER upon completion of those

4,18.1.3

4.18.1.4

4.18.1.5

6SM #124.1 - FREND
Page 51

orders. 1FP holds the PTNDIK interlock while
manipulating these fields (as does FREND).

SENDCP,

SENDCP uses the following algorithm when called
to send an OTBS record:
if FREND low on buffers
set PTWTBF in port
clear PTOTBS
drop out
else (no low buffer)
if PTXFER set
recall
else (PTXFER clear)
if above threshold
clear PTOTBS
if mainframe request
format/send OTBS
else (not mainframe req)
don't send OTBS
endif
else (below threshold)
format/send OTBS
endif
endif
endif
If the FREND system is low on allocatable
buffers, SENDCP sets the PIWIBF flag (which
causes routine BUFFER to send another OTBS when
more buffers show up) and c¢lears PTOTBS (so that
SENDCP will run when called by BUFFER).

SKOTCL/NEXTLIN (PRINT),

When either of these routines sees that the port
is low on data, they set PTOTBS, and then call
SENDCP to send an OTBS only if PTOTBS was
previocusly clear.

CTILPT,

CTLPT handles . mainframe requests for. OTBS'Ss. .
When an OTBS request comes in from the mainframe,
CTLPT will set the PTOTBS flag and request SENDCP
to send the OTBS in any case. except when 1) the
PTOTBS flag is clear, and 2) the port is above
threshold. When these two conditions are trve,
we know that an OTBS has not yet been sent, but
will be as soon as the - output in the port is

printed off.

6SM #124.1 - FREND

Page 52

419

CTLPT flags the OTBS request to SENDCP as a
request from the mainframe by setting the
V.EXTREQ flag in the request.

4.18.1.6 BUFFER,

In subroutine FREEPT, when BUFFER has determined
that the system is no longer low on buffers and
the PTWTBF flag was set in the port, the PTOTBS
flag is set and SENDCP called to issue an OTBS
when the port is below threshold and the PTOTBS
flag was not previously set.

4.18.1.7 INESC.

In subroutine ZAPPTO, when INESC has emptied the
port of output in response to an escape, the
PTOTBS flag is set and SENDCP called to issue an
OTBS if PTOTBS was not previously set.

4,18.1.8 PRINT (backspace processin

When backspacing a printer, it is desired to
finish printing the data 1in the port before
actually beginning to backspace. FREND must wait
for the port to empty, and he wants it to stay
empty, so PRINT sets the PTOTBS flag without
sending an OTBS--this causes all other routines
which might request more data to cease and
desist. After the port empties, PRINT does the
backspace and then requests SENDCP to send the
OTBS. :

4.18.1.9 PPIOCL,

PPIOCL sets the PTOTBS flag and calls SENDCP to
send an OTBS only if the port is below thresholad
and PTOTBS was not previously set.

ntrol port message the mainframe

CTLPT proceéses“ail inbound»(from the mainfréme).messages.

- on control ports. Each eontrol port record is acted upon

;n an appropriate fashion..

This task is invoked by the device 5 (mainframe) ISR whenever
output is received on a control port.

4.20

4.21

6SM #124.1 - FREND
Page 53

See ISR65 for a full description of the 1FP/FREND
protocol.

Control port messages are sent from the mainframe routines
MANAGER, ARGUS, and the stimulator. They are automatically
transferred by 1FP.

ISR65 receives these protocol records and adds them to the
output stack on the appropriate control port on the 7/32.
It then calls CTLPT for that control port.

CTLPT will process all records on the port output stack,
and then exit.

Control port open/close.
CPCLO performs three distinct functions for control ports.

CPCLO - control port close. .

This task closes each socket and port connected to a
control port. For each connection, it sends a termination
message, and then invokes CLOFPT to do the actual

close.

CPACT - control port activity.

This task executes once each minute. If no activity occurred on
the control port within the last minute, it marks the port as
inactive, and sends a message to each socket specifying service
interrupted. This task 1is initially started by CTLPT upon
receipt of the first FP.CPOPN (control port open) for a control
port.

CPOPEN - control port open. Whenever a control port is opened
(after having been closed) CPOPEN will send a SERVICE RESUMED
message to all sockets whose port is connected to the control
port. This task is started by CTLPT upon receipt of an FP.CPOPN
when the control port does not have the S65 (connected to
mainframe) fliag set. (CPACT is started al the same time, and S65
is set)

SOCMSG: send 'a message to a socket.. SOCMSG adds a message to

‘the socket output.stack. It is used by the 7/32 for sending all’

internal (i.e., originating within the 7/32) messages to the
socket. Generally, these are front-end command error messages,
and messages from OPEN (service not available), CPCLO (service
terminated) and CPACT (service interrupted).

SOCMSG can be called as a task, or as a subroutine. The task

6SM #124.1 - FREND

Page 54

y.22

call is preferred when only 1 or 2 messages are to be sent. The
subroutine call is preferred when messages are to be sent to all
lines (to prevent placing 100 SOCMSG tasks into the task stack).

Note that if the socket output stack is full, SOCMSG will throw
the message away. This prevents a large number of SOCMSG tasks
always in recall on the timer queue. The assumption here is that
internally generated messages are so few that 5 positions on the
output stack should be sufficient except in pathological
conditions.

The one exception to this is socket 1 (the console) since this is
a 110 baud device, and many messages go to it (all trace and
error messages), SOCMSG will add messages to a 20 slot message
stack. This stack is serviced by SKOTCL.

CONMSG: send a message to a connection.

CONMSG is similar to SOCMSG, but is used when the message is to
be sent to the other end of a port connection. CONMSG is called
specifying the port number. If the port is connected to a
socket, CONMSG will simply call SOCMSG. If the port is connected
to another port, CONMSG will try to add the message to the
destination data port, and will recall itself indefinitely until
the message is accepted.

al interrupt processing.

ISRROUT contains all interrupt service routines
for interrupts which indicate a hardware or software
malfunction.

1. Arithmetic fault interrupt.

2. Machine malfunction interrupt
(memory parity error, power failure, or
1FP killing the 7/32.)

. Protect mode violation.

System queue interrupt.

5. Console interrupt. (this resets W#DISP,
the front panel display address, and is the
only interrupt which is not an error)

6. Illegal instruction. This generally is
caused by a purposeful software crash.

7. Interrupt on a non-existant I/0 device.

= w

System crashes.

7/32 software ‘crashes are caused by the CRASH macro, which
simply generates an illegal instruction. This causes control to
pass to the illegal instruction interrupt processor, which saves
register set 0 at REGOSV and register set F at REG1SV. The PSW

.

4.23

6SM #124.1 - FREND
Page 55

which was active when the crash occurred is then printed at the
console teletype, and FREND hangs in a loop flashing DEAD on the
front panel.

General 1FP/FREND protocol,

Al11 interrupts from the 6500 are expected to have set FCMDTY in
the FPCOM table to a command for ISR65 to process. Almost all
1FP/732 interchange is based on the FPCOM table. There are two
basic sequences: 1. Read (1FP reads data from 7/32) 2. Write (1FP
writes data to the 7/32)

4.23.1 Read (7/32 to mainframe).

On a read, the 7/32 places the address of a buffer containing
data, into word W.PTIN of the associated data port. When 1FP
sees this word non-zero, it requests the PTINIK interlock,
which tells the 7/32 that it is using this word. It then reads
the data from this buffer. When it is done, it sends an ITOOK
command to the 7/32, specifying the port number. The 7/32
(ISR65) then releases the buffer pointed to by W.PTIN, and
attempts to refill the PTIN word from the circular input list
of the port. The 1last thing the 7/32 does is release the
PTINIK interlock, which tells 1FP that it can 1look at W.PTIN
again. If the buffer was read from a data port, task SENDCP is
started to return a new FP.INBS (input buffer status) to the
mainframe. This way the mainframe is always informed of the
number of input lines waiting in the 7/32. This action is not
necessary for control ports, since they are always
automatically serviced by 1FP.

4.23.2 Write {mainframe to 7/32).

On a write, 1FP first interlocks the output side of the port by
getting the PTOTIK interlock. It then checks H.PTOTNE, which

is the count of available cells on the ocutput circular stack.
If non-zero, 1tF gets a 7/32 buffer by reading a buffer address
from W.NBF8G (for an 80 character bufreri, or W.NBF2UO (for a
240 character ' buffer) in FPCOM. 1FP selects the smallest

buffer which will hold the entire record to be written. 1FP
then writes data. to this buffer. Finally, it sends a HEREIS
command to the 7/32 specifying the port number. This tells the
7/32 to refill NBFBO/NBF240 with a new buffer, and to move the
buffer whose addréss was in W.NBUF to the port circular output
stack. H.PTOTIK is then released.

6SM #124.1 - FREND

Page

56

4.23.3 Interlocks,

There are 4 interlocks, all set by 1FP and cleared by the
7/32. These interlocks all have the same meaning:
1FP is altering or has altered the fields, and the
only 7/32 routine which may process these fields is
the mainframe ISR.

Thus, 1FP wil not process a field until it can
get the interlock, and the 7/32 mainframe ISR ensures that all
such interlocks have been set.

Interlocks:

PTINIK port input interlock. Interlocks W.PTIN

PTOTIK port output interlock. Interlocks W.PTOT, W.PTOTNE
NBUFIK FPCOM next buffer interlock. Interlocks W.NBUF
FCMDIK FPCOM command interlock. Interlocks W.FPCMD

4.23.4 Commands.

1FP can send 3 commands to the 7/32:

1. ITOOK ~ 1FP has read a buffer full of data

2. HIB0 - 1FP wrote to the 80 character buffer (W.BF80)

3. HI240- 1FP wrote to the 240 character buffer (W.BF240)

All commands consist of the command ordinal, and
the port number to which the command applies.

1FP will set the FCMDIK interlock before writing a command to
W.FPCMD. This interlock is cleared by the 7/32 only when it
has finished the command, and is ready for another one.
Interlock clear = ready for command.

4.23.5 Buffers,

W.NBF80 is the address of an 80 character buffer for
1FP to write in.” W.NBF240 is the address of a 2&0 character.
buffer for 1FP to write in. . ..
1FP always sets the NBUFIK interlock . before using 1 of these
buffers. The 7/32.refils the buffer cell (w NBUF) and
clears the interlock.
Interlock clear = W.NBF80 and W.NBF240 each contain

an available buffer.

Two. different buffer sizes are provided,fbr 1FP:
80 characters of data (W.NBF80)

4. 24

4,25

6SM #124.1 - FREND
Page 57

240 characters of data (W.NBF240)
1FP always chooses the smallest buffer which will hold
a complete line. It then writes to that buffer, and
sends the appropriate hereis command to tell
the 7/32 which buffer it used:

FC.HI80 - 1FP filled 80 character buffer

FC.HI2U0 - 1FP filled 240 character buffer.
In each case, the 7/32 replaces the buffer just filled
with a new buffer of the same size.

Ihe FREND MONITOR,

MONITOR is the main loop for any 7/32 CPU running in the front
end system. It continually scans the task request stacks for any
requests made by interrupt routines (or SVC routines), other
tasks, or other CPU'S. When MONITOR finds a task to run, it sets
up the task parameters and begins execution of that task. When

the task completes, MONITOR begins again at the top of its loop. _

MONITOR also performs other important functions each time through
its main loop:
1. The console display panel is updated with the
value of the word pointed to by W#DISP. This
provides a dynamic core display.
2. Routine BUFFER is called to manage the
buffer stacks.

If there are no tasks to execute, MONITOR enters a wait state by
setting the wait bit in its PSW. Any interrupt will exit by
clearing this wait flag, causing control to resume at the top of
the MONITOR main loop.

Supervisor call routines,

There are 3 SVC (supervisor call) routines
defined for FRENL:

REQTSK - *ask reguest with no delav
DLIREG -~ task reguest witn desay.

GETID - return a new ID number.
SVCROUT contains REQTSK and GETID.

REQTSK: this SVC is invoked by the REQTASK macro when no delay .

‘parameter is specified. The SVC instruction is followed by the

task request block, as described in section 4.3. REQTSK moves
this task block onto the proper task request stack, based on the
requested priority (STK=HI, STK=MED, or STK=LOW).

GETID: this SVC simply returns the next ID number. The iD 1s

6SM #124.1 - FREND

Page 58

4.26

a 15 bit number which increments sequentially on each GETID call.
No attempt 1s made to handle the rollover condition in any
special manner. Through this may result in duplicate ID numbers
(after 32,762 calls), this should have little effect, since the
ID is simply a double check for each task to ensure it is working
on the correct user.

Certain components of the FREND system need the ability to
request background tasks which will not be executed until
a specified interval has elapsed. To accomplish this, the
DELAY parameter of the REQTASK macro is used. causing
REQTASK to make a special supervisor call for a delayed
task request.

This supervisor call routine (DLYREQ) computes the absolute
time that the delayed task should be executed, and requests
a task (TIMR) which will put the delayed request on the timer

queue.

The timer queue is a list of delayed task requests, ordered
by expiration time, so that the next delay to expire is

the first entry on the 1list. TIMR simply sorts the new
delayed request into the 1list.

The "precision interval clock" (PIC) is a device which can
be ordered to interrupt the CPU after a given interval. The
PIC is set to interrupt at or before the expiration time of
the first delayed request on the list.

When the clock interrupts, a task called CKTIMR is run.
This task removes any expired entries from the list. and
enters them as immediate task requests on the reauest stacks.

4,26.2 PIC operation,

The precision interval‘clock'(PIC)-works as follows:

16 bits of data are sent to the clock's input register. Of
these, the top 4 bits specify the resolution, or the rate at
which the clock is to count down its interval. The resolution
may be milliseconds, tenths of milliseconds, hundredths of
milleseconds, or microseconds. The lower 12 bits sent to the

6SM #124.1 - FREND
Page 59

clock specify the interval to count. If the resolution is
milliseconds, the clock can be set to count anything from 1
millisecond to 4.095 seconds.

At the command to start, the clock transfers the data which has
been sent to its input register into its counting register.
The counting register is then decremented at the resolution

frequency.

When the clock's count reaches 2zero, the clock reads its input
register (which may be unchanged from the last time), and
begins counting a new interval. Whenever the clock reads its
input register, it interrupts the CPU.

The clock's input register may be set at any time, without
disturbing the on-going count. Thus the clock may be prepared
for its next interval before the present one is complete - the
clock may be set to interrupt at irregular intervals without
ever having to be restarted.

At any time, the CPU can read the contents of the PIC's
counting register, giving the count remaining until the next
interrupt. Thus 1if the time of the next interrupt is known,
the present time may be found by subtracting the value read
from the clock.

FREND restarts the PIC whenever it interrupts. The clock
resolution 1is always set at 1 millisecond., and the maximum
interval is one quarter second. Thus if the next expiration
time is 4.5 seconds away. the one quarter second interval will
be sent to the clock. Eventually. there will be an interrupt
when the next expiration 1is .5 seconds away. After this
interrupt, the interval of .5 second is sent to the clock. The
clock begins counting this interval immediately.

4,.26.3 Delayed request gueue,

The delayed request queue, or timer queue, is a linked list,
with fixed-length entries, and feorward links only. The list is
terminated vy an entry with a zero iink fieid. The first word
of an entry contains the link. which is the absclute address of
the next entry. The second word is the expiration time - the
value of the millisecond counter at the end of the delay. The
actual task request begins in the third word. There is a
maximum size for a task request, and a timer queue entry is
that many words plus .two. .

The timer queue also has an empty chain. from which new entries
are taken. When the 1length of this chain falls below a
threshold level, a task is initiated (TIMMOR) which calls the
memory MANAGER to assign a block of core,. and extends the empty
chain into 4it. The clock interrupt service routine (I#PIC)
maintains a millisecond counter, in a sense. Since the clock

6SM #124.1 - FREND

Page 60

does not interrupt each millisecond. but at irregular
intervals, the millisecond counter (NEXTINT) is always set to
the time it will be at the next clock interrupt. The present
time, to the nearest millisecond, can always be obtained by
reading the clock. and subtracting that from NEXTINT.

4.26.4 Unsolved problems,

1. Nothing has been done to prevent overflow of NEXTINT. If
the clock resolution is 1 msec, NEXTINT will overflow after
approximately 25 days of continuous front-end operation. This
would seem to be enough - but if the resolution is set to .1
msec, NEXTINT will overflow after 2 1/2 days, which is
conceivable.

2. When the empty chain gets down to a certain 1length, the
TIMMOR task gets a block of core to expand it in. No
provision has been made to return these blocks when the empty
chain gets big enough.

4.26.5 FREND timer components,

The FREND timer mechanism consists of one interrupt
service routine, one SVC routine, and a number of background
tasks:

I#PIC interrupt service routine for the PIC. Updates the
millisecond clock, and requests CKTIMR.

DLYREQ supervisor call routine to make a delayed request
entry. Computes the absolute expiration time,
moves the request to a new entry, and calls TIMR to
sort the new entry in.

TIMR task to sort a new entry into the queue. After
doing so, it causes a PIC interrupt if the new
task was linked onto the front of the queue.

CKTIMR task to check and clean up the timer queue. Removes
all expired entries and puts them on the task
request stacks.)

TIMMOR task to augment the empty chain. Gets a block
of core, and links it in. ’

TIFIND subroutine to seafch'the timer queue for
the first entry expiring after a given time.

POPEXP subroutine to separate expired entries from
the timer queue.

The following variables are maintained in core:

TIMHEAD
TIEHEAD
TINEMPT

NEXT INT

LASTCLK

4.27 Trace.

6SM #124.1 - FREND
Page 61

points to the current timer queue head entry
points to the current empty chain head
count of empty chain entries

the millisecond clock. This is not incremented
every millisecond, since the clock does not
interrupt that often. This cell contains the time
it will be at the next interrupt. To get the real
present time, you have to read the clock and
subtract it from NEXTINT.

the interval last sent to the clock, without the
resolution bits. This is the value in the PIC's
input register at any time.

Trace is a routine which can be called to
issue a message to the console TTY tracing
a specific event. The message is under
control of the $SET,TRACE,{0{1} command.

Each trace call specifies a 4 character parameter, and
2 32 bit values. The final trace message issued is:
HH:MM:SS: DD/MM/YY XXXX AAAAAAAA BBBBBBBB
XXXX = 4 character parameter (event)
AAAAAAAA = first value, in hex

BBBBBBBB

second value, in hex

The following trace messages are issued by FREND:

BL

0000AAAA BBBBCCCC

issued when a low buffer condition is detected.

AAAA
BBBB
cccc

BH

= number of free blocks in malc table.
= number of 80 character buffers.
= number of 240 character buffers.

0000AAAA BBBBCCCC

issued when the low buffer'conditioﬁ clears, and’_
normal operation is resumed.

AAAA!

BBBB
cccc

CFPT

= number of free blocks in malc table.
= number of 80 character buffers. -
= number of 240 character buffers.

AAAAAAAA BBBBBBBB

close from port

© AAAAAAAA =
BBBBBBBB = ID

port number

6SM #124.1 - FREND
Page 62

CFSK AAAAAAAA BBBBCCCC
close from socket
AAAAAAAA = socket number
BBBB = device number
cccc = 1D :

CPCL 0000AAAA 00000000
control port close.
AAAA = control port number.

CPOP 0000AAAA 00000000
control port open (FP.CPOPN from the mainframe)
AAAA = control port number.

OPSP AAAABEBB CCCCDDDD
OPSP = open socket to port.

“Aaaa = originating socket number

“bbbb = destination port number

“cecee = socket device number (corresponds to phone line)
“dddd = ID number

OPPP AAAABBBB CCCCDDDD
OPPP = open port to port.

“Aaaa = orininating data port number
“bbbb = destination data port number
“cecee = destination control port number
~dddd = ID number

4,28 Buffer management,

BUFFER manages the free buffer list and free
buffer chain.

Buffer management must satisfy the following 2 needs:

1. Obtaining a new buffer must be very fast, since it
is done by interrupt service routines.

2. Managed memory must be used for buffers. This
gives the flexibility of using the managed memory area
to allocate any number of buffers which are necessary.

The only way to satisfy requirement 1 is-to maintain buffer
addresses in a 7/32 circular list (delinking buffers from

a chain is too time consuming).

The easiest way to satisfy requirement 2 is to maintain -
each managed memory block as a single buffer.

6SM #124.1 - FREND
Page 63

y.28.1 buffer t

There are three different free buffer lists: the free
buffer circular list, the buffer release list, and
managed memory.

The free buffer circular lists:

There are 2 lists - BF80 and BF2l0.
BF80 - this contains buffers which will hold up to
80 characters of data (they are actually L.BF80
characters long, which is 80+L.DTAHDR = 84),
These buffers are used for everything except:
user input data
mainframe output lines longer than 80 characters
the register save area from ERROR

BF240 - this contains buffers which will hold up

to 240 characters of data. (they are actually 3#L.BF80
characters long, which is 252. This is done so that

they are an even multiple of smaller buffer blocks.)

240 character buffers are used so that user input and long
output lines need not be split within the 7/32.

Each free buffer list is maintained at least 3/4 full
by the BUFFER routine, which is called by MONITOR
main loop.

Buffers are removed from these lists by the GET80
and GET240 macros. Buffers are never returned
directly to this list. The PUTBUF macro

returns buffers to the buffer release list.

Only the BUFFER routine adds buffers to these lists.

The buffer release list:

There is one buffer release list, PW.BFREL, for all
buffers returned via the PUTBUF macro.
Buffers =f boeth 80 and 240 characters are intermixed
on this list. Every time through the MONITOR main 1loop,
BUFFER! is called. It removes buffers .
from this list and restores them to the proper free buffer
list (BF80 or BF240). If the free buffer list is

- full, the buffer is returned to managed memory.

The managed memory. area:

Each managed memory block is L.BF80 characters long.
A small buffer is thus one block. - A large buffer

is three blocks. This gives the flexibility

of keeping different size buffers without requiring
a fixed number of each size.

6SM #124.1 - FREND
Page 64

Buffers are requested from managed memory to fill the
free buffer 1lists to 3/4 full. Managed memory is never
used to fill these lists more than 3/4 full. since
additional buffers may be released from the BFREL list.
Buffers are only returned to managed memory when the
appropriate free buffer list is full.

80 character buffers have a memory ID of ID.BF80.
240 character buffers have an ID of ID.BF240.

The ID is kept in the MALC table. This is the only
indication that a buffer is 80 or 240 characters.

Why there are 2 different size buffers:
1. It is advantageous to have the maximum number of
buffers possible on the 7/32 since this reduces overhead
at the host machine, and provides maximal data
throughput with no interruptions.
2. Each buffer holds only 1 line of data. This is done for
ease of implementation of many features on the 7/32.
90 percent of all data can fit in 80 characters. Thus,
it is desirable to have a large pool of small buffers.
3. The maximum input line is 240 characters, and it
is much cleaner to have only one buffer for
long input (and output) lines. Thus, buffers
are needed to hold 240 characters.

4.,28.2 Buffer full condition.

Since there are a finite number of buffers on the 7/32

it is necessary to handle the condition where almost

all the buffers are in use. The 7/32 handles this

by setting a buffer threshold flag. When 1FP sees this

flag set, it will stop filling the 7/32 with output from

the mainframe. Note that user input, and control-port stuff,
will still fill buffers. Hopefully, the threshold

will be sufficient to allow the 7/32 to function without
running out of buffers completely.

1. Flag H.NOBUF in FPCOM is set non-zero when there
are less than L.BUFOK free memory blocks.
This will only be the case if all memory is already
parcelled up into buffers.

2. When this flag is set, 1FP will not write any output
to data ports on the 7/32, but will set flag H.PTWTBF
in each port for which it has data. It will then suspend
the output operation. (swapout)

3. When the number of free memory blocks rises above
L.BUFOK, routine FREEPT will cause an FP.OTBS
control port record to be sent for each port

4,29

6SM #124,1 - FREND
Page 65

which had the H.PTWTBF flag set (it also clears this
flag). This protocol record will cause MANAGER/ARGUS
to wake up any job waiting for output.

4.28.3 Error detection.

Each buffer which is on a circular list, but
not in use, has its entire first word zero.
Each buffer which is in use has its first word non-zero.
Based on this, this following checks are made:
1. In RELBUF, each buffer removed from the
BUFREL list must have its first word zero.
2. Each buffer added to the BF80 and BF240 lists
has its first word zeroed. The GET80 and GET240
macros check this first word to ensure that
it is zero.

Each 80 character buffer has an ID in the MALC table of
ID.BF80. Each 240 character buffer has 3 consecutive
blocks in MALC whose ID is ID.BF240. Based on this,
the following checks are made:
1. In RELBUF, the buffer address must be a multiple
of L.BF80. -
2. In RELBUF, if the ID of the first block of a buffer
is ID.BF240, then the ID of the next 2 blocks must
also be ID.BF240.

Management of allocatable memory.

Overview:

In the LMBI of the front-end, there exists a portlon of core
memory which can be assigned, in small chunks of uniform size,
to any logical entity (hereafter referred to as "caller",) who
needs memory. A caller might be a connection, port. socket, or
some such 2 caller is identified by a unique number.

A1l changes in core assignment are accomplished

‘by subroutines in this ident. MANAGE does the bookkeeping,

maintaining a table which shows the current assignment of any
block - of allocatau&e memory.

: Subroutines':

AQMEMRY this subroutine is called on behalf of a caller who
needs memory. The caller's number and the number of
bytes it requires must be specified. AQMEMRY
finds a free area at least as big as the requirement,
assigns it to the caller, and tells the caller where it
is. If sufficient core is unavailable, AQMEMRY .
informs the caller, who must wait.

6SM #124.1 - FREND

Page 66

4.30

RQMEMRY

RQALL

This routine is called by the

'~ MEMORY macro.

this subroutine is called when a caller no longer needs

its blocks of core, and it may be called in one of

three ways:

1. With a specific FWA and length of an area to
release - RQMEMRY will expect to release a
contiguous area of core assigned to this caller.

2. With an unspecified FWA and length - RQMEMRY
will release all memory belonging to the caller.

3. With an unspecified length, but specific FWA -
RQMEMRY will return all core assigned to the
caller following the FWA.

this routine releases all memory assignments,
regardless of ownership. It should probably be
called only during initialization.

Error checking done by these subroutines:

AQMEMRY - assign memory.

1. Ensures that the caller has a non-zero
ID number, less than 10000.

2. Ensures that the amount of core required is
greater than zero.

RQMEMRY - release memory.
1. Ensures that the ID number is non-zero and less than

SKOBIN

U EwN

Binary output mode. Set whenever the line
currently printing in the CCB (buffer zero) is

in the BI or AS character set. This bit inhibits
right margin processing in the output ISR.

Ensures that the byte count is greater than zero.
Ensures that the FWA to release is positive.

If FWA=0, the byte count must also be zero.

If FWA is non-zero, the byte count must be an exact

multiple of the block length, and FWA+byte count
must be in core.

FREND core layout,

T7/32 core is arranged ih-tw& separate.segments: low
core, -and the LMBI (shared memory).

6SM #124.1 -~ FREND
Page 67

4,30.1 Low core,

Low core is memory exclusive to one CPU. It can be read and
written directly by the Cyber channel interface. However, the
interface cannot test-set any cells in low core.

The first 500 bytes of low core are reserved for certain
hardware status words, as described in the 7/32 reference
manaual. These include PSW storage areas and SVC address
vector. Locations DO through 2CF contain the ISR address for
devices connected to the 7/32 I/0 bus. Each consecutive
halfword contains the ISR address for the next device address.
Space is allocated for 256 devices. These cells are setup by
INITIAL.

Locations 900 - 940 contain the powerfail - restart save area.
Whenever the INI button on the 7/32 console is pressed, or when
the mainframe halt-loads the 7/32, the current PSW is stored at
900, and the current registers are stored starting at QUO,
These addresses are defined as PFPSW and PFREG in FESYM.

The FREND core image begins at 0#988. (This is an arbitrary
address - it must simply not overlap the ISR vectors and the
powerfail save area). FREND 1is a contiguous ‘core image,
containing all executable code and 1local storage areas. It
extends from 0#988 through about 0#12000.

Early in FREND is the set of channel command blocks (CCB).
There is one CCB for each PAL and printer defined in the device
definition deck. The CCB is used to send output to a device,
and is described in the 7/32 reference manual and in section
4.24., CCBS are built by INITIAL. Because the CCB address is
storred in the ISR vector at O#D0, it is limited to 16 bits.
This means that all CCB's must begin before O#FFFF. Each CCB
is O#24 bytes 1long. Note that FREND maintains certain
information at the end of each CCB which is not part of the
standard 7/32 hardware supported CCB.

The Bus Status Tahle (BST) follows the CCBs, although it
doesn't need to and could as well be in the LMBI. The table,
which is alsc built by INITIAL, contains one entry for each
bus. These entries can be changed as a result of commands
which affect the bus. T

Between the end of FREND and the 1last 2000 hex bytes of memory
are the task request stacks (circular 1ists). There are 3
~stacks: high priority, medium priority. and low priority. 25
percent of the task queue area is allocated to the high
priority stack, 50 percent to the medium priority, and 25
percent to the low priority stack. Each stack is really a
standard 7/32 circular list. Requests are. added to the top of
the 1list (by SVCROUT) and removed from the bottom of the list

6SM #124.1 - FREND

Page 68

(by MONITOR). The lists are built by INITIAL.

The last 2000 hex bytes of low core are reserved as the 1FP
dump area. Whenever 1FP finds the 7/32 has died, or when 1FP
purposely kills the 7/32, it dumps itself to the 7/32 starting
at the memory LWA. - 2000. The dump is 6 PP bits into every 8
7/32 bits - one PPU word for each 7/32 halfword (2 bytes).

FREND is designed to work with at least four 32KB memory boards
in low core. If additional boards are added, the 1FP dump
address will automatically be readjusted.

4.30.2 LMBI (shared memory),

The LMBI can be read and written by two CPUS, and by the
mainframe interface. The interface can also test-set cells in
the LMBI. In the current FREND configuration, there is only
one CPU, hence the LMBI is not shared. Almost all FREND tables
are kept in the LMBI. The entire LMBI is built at
initialization time by INITIAL. INITIAL determines the size of
the LMBI - hence boards can be added or deleted as necessary.

The first area of the LMBI is the pointer area. This consists
of a set of pointers to all other LMBI tables. The pointers
are found in fixed areas assembled into FESYM. Each pointer
has a symbol of the form PW.XXXXX. The pointer 1is 12 bytes
long. The first 4 bytes (word) W.PWFWA, 1is the actual
first-word address of the table. The next halfword, H.PWNE, is
the number of entries in the table. The next halfword, H.PWLE,
is the length of an entry. The remaining two halfwords have
various meanings depending on the table involved.

All tables within the LMBI are located by a PW. Pointer. The
PW table is setup by INITIAL. The /LMBI deck defines how many
of the tables are allocated. Others are built by INITIAL ba=ed
on available core and the device definition deck.

PW pointer table descriptions.

MISC the miscellaneous table, containing the date,
time, and version number.
LE is the total table length in bytes.
M1 is the H.INICMP flag. This flag is zero during
initialization, and is set to 1 as soon as
initialization completes, telling MANAGER that FREND
is now ready to run. It is set to 2 when FREND
crashes, telling 1FP that the 7/32 is dead.

FPCOM = the intercommunication area between

FREND and 1FP.

BF80 a circular list containing addresses of available
80 character data buffers. This list is
maintained 3/4 full by the BUFFER routine.

BF240

BFREL

BANM

LOGM

SOCK

DVSK

PORT

‘PTBUF

MALC

6SM #124.1 ~ FREND
Page 69

The GET80 macro gets a buffer from this list.

a circular list containing addresses of
available 240 character data buffers. This
list is maintained 3/4 full by the BUFFER
routine. The GET2L40 macro gets a buffer from
this list.

a circular list containing the addresses

of all buffers to be released. Addresses of

both size buffers appear on this list. The BUFFER
routine empties the list and returns the buffer
addresses to BF80, BF240, or allocatable memory.
The PUTBUF macro adds buffers to this list.

the banner message. NE is the number of lines in
the message. LE is the length of a single line.
BANMES, the banner message set-up program, writes
directly into this table, and its contents are
copied onto each banner page.

the login message. NE.LOGM is the number of

lines in the message, and LE.LOGM is the length of
each line. FELOGM, a comdeck used by both LOGMES
(the login message set-up program) and MANAGER,
writes directly into this table. The login message
is issued to each user immediately after the FREND
system header.

the socket tables. NE is the total number of
sockets. The first socket is referred to as
socket 1. LE is the length of each socket.

This table is built by INITIAL after it determines
the number of sockets from the DEVICE deck.

each halfword in DVSK indicates the socket
number for the corresponding device number.

the port tables. NE is the total number

of ports, LE is the length of each port table.
Trhe first port is referred to as port 1. This
table is built by INITIAL based on the number
of sockets and extra ports in the DEVICE deck.

the circular lists for the port input and

output stacks. Each list in this table is-
pointed to by PTINCL or PTOTCL in the port tables.
LE is the total length of the table in bytes.

This table is built by INITIAL, which sets up each
circular list as empty.)

the memory allocation table. Each halfword
corresponds to a memory block in ALLOC. If the

halfword is zero, the corresponding memory block

6SM #124.1 - FREND

Page 170

4.31

is free. If non-zero, the memory block

is in use, and the halfword contains an ID value
indicating the owner of the block. This table is
ma intained by the MANAGE routine.

NE is the total number of blocks.

M1 is the total number of available blocks.

ALLOC allocatable memory. This table is divided
into blocks of size LE (currently LE.BF80).
The MALC table indicates whether a block in ALLOC
is in use or available. NE indicates the
total number of blocks. Allocatable memory is
only used for the timer chain, and for buffers.
One block is a small buffer, 3 consecutive blocks
is a large buffer.
M1 is used by the MANAGE routine to
aid in finding a free block.

4.31.1 SOCKET.

A socket is a table associated with a PAL (or printer). Each
PAL is associated with a dial-up or hard-wired communications
line. The association between a specific socket and PAL is
permanent. The socket table contains all information necessary
for FREND to communicate with the device. All terminal
attributes, such as parity, right margin, etc., are stored in
the socket. In fact, most front-end commands alter fields
within the socket. -

Sockets are numbered sequentially beginning from one. Socket
one is always the FREND console teletype. Socket two is always
the operator teletype. The first phone 1line is socket three.
Sockets are fully described in section 4.37, and in FESYM.

.31.2 PORT,

A. port is a table associated .with a connection to the
mainframe. A socket can be thought of as the description of
the phone-line side of the 7/32, while the port describes the
mainframe side of the 7/32. All data transfer between the
mainframe and the 7/32 takes place using information contained
in the port table.

The first three ports are known as control ports. They are
permanently assigned to MANAGER., ARGUS, and the stimulator,

6SM #124.1 - FREND
Page 71

respectively. = Control ports are used to transfer protocol
records between the 7/32 and the mainframe. These records
indicate the state of various users on the mainframe and the
7/32. For example, a protocol record would say that a user
Just hung up, or just entered a line of data. Protocol records
are fully described in section #.40. A more up-to-date
description will be found in FESYM.

All ports after the first three are known as data ports. Data
ports are held in a pool. When a user dials in, a connection
must be established between the user's socket and a data port.
The first unassigned data port is 1linked to the socket by
inserting the socket and port numbers in the port and socket.
This establishes a "connection". Because the user will be
under control of MANAGER or ARGUS, the data port is linked to a
specific control port by inserting the control port number into
the data port.

Data or protocol records are represented in the ports as buffer
addresses kept on 7/32 circular 1lists, which are pointed to by
fields in the port. Each port has a separate input and output
circular 1list. These 1lists are manipulated only by the 7/32.
When 1FP reads data for a data port, a field in the port gives
1FP the buffer address from which to read. When 1FP writes
data for a port, it writes it to a free buffer on the 7/32.
The 7/32 then adds this buffer address to the output circular
list for the appropriate port.

4.31.3 Buffers.

All data and protocol records in the 7/32 are kept in buffers.
There are two different size buffers, 84 characters (80 data
characters plus 4 header bytes) and 252 bytes (248 data
characters plus 4 header bytes). The official maximum line
size is really 240 characters - the 252 byte size is greater
than this, but is used because it is a multiple of 84.

The two different size buffers are provided to allow maximal
core utilization., while not requiring lines to be split over
buffer boundaries. There are 3 circular 1lists wused for
buffers: BF80 is a list of 84 byte buffers. The GET80 macro is
used to get a buffer from this 1list. BF240 is a list of 252
byte buffers. The GET2U0 macro is used to get a buffer from
this list. BFREL is a list of released buffers. The PUTBUF
macro- is used to release a buffer to this list. Buffers are
maintained on circular 1lists and managed memory, as explained
in section 4.27. N - : -

The first 4 bytes of each buffer is a buffer header. This is
explained in section 4.32.

6SM #124.1 - FREND

Page T2

4.32 FREND Table Relationships

The illustration accompanying this section shows the "pointer”
relationships between the various tables used by FREND when
servicing a connection. A solid 1line pointing from table A to
table B indicates that table A has a field containing the
absolute address of a table B entry. A dashed line indicates
that the absolute table B entry address is found via an index,
which is multiplied by the entry length and added to the base
address of the table. For all LMBI tables, the base address,
number of entries, and entry length are found in the pointer
table (PW. symbols) at the beginning of the LMBI.

FREND T able

-

Reloron s p3

-]
Cove locakm Do ISR Address Tonteve u‘,ﬂ-’ Low covea
m Seyvice. Relow ?5000)
C(' QO\\‘H W &L i
(Isr) :
IsR/ %6’,&
ccgB \’J
Pointer -
Tovle (Lcufaﬁff'
N
CMY\\",C! 'DE\)\CE)
Command
Blocle.
| (cce) |
™,) JrTeni] (Lmel)
O Device [Sacket /
LN Fointee Table : P 4 -
A . (Dusk) g e
< }b\ é\)‘d\/ _ 7 'PO R
0\ + 8 o) N8 el -
X 3= C 2 N2 I .
v 9 o &F . e T
< 4 O< -
42
(LMeY) [EEveN [Swacaal -~ 7 ,
: SKewi | Nk
skeNz - Ford N ext Trnpuk
Term\\rai —~ Améﬂm ‘rf/\‘t?rf“a W(:‘:r
T'“.f&er) < Sotheft Numbor Joret T Dy ‘J
(mat) e SEINGE CorT :"‘3“
e] > %c
Socket : :
(seck) .
i . evoTcL |
. E— ; / B S ST Ny
L— Sacke
—— Oudpnt bagt - N o B
o (skote) T T T e[\ { o
ol — e Eor‘\‘ *’ -
— — — lnpu
- ‘ . - By
FREND gcg“u N _L.‘s B
T wrerral ‘Li\' pl;
agage 'S
EA: " (LM&I) -) —_ (LM&I) r‘_
‘lV\ \ow — e ~~,_‘) U
(‘0'\?&3 : -1 I
A W PR § ! '

4.33

OSM #124.1 - FREND
Page T3

When a device interrupts the 7/32, it puts its address on the 1/0
bus. The T7/32 micro-code uses this address to index into the
interrupt service vector, always located at 0#DO in low core.
This vector contains either the address of an interrupt service
routine (ISR) or a channel command block (CCB). 1If it is an ISR,
the 7/32 puts the device address in register 2, and starts the
processor at the ISR address. The ISR uses the device address to
index into the DVSK table in the LMBI, and loads the absolute
address of the SOCKET table for that device.

The SOCKET may contain two "connection numbers", which are used
as indices on the PORT table. The PORT entry contains absolute
entries to the input and output circular 1lists, which contain
addresses of buffers. (The circular list format is defined by
the hardware - see the 32-Bit Series Reference Manual.) The
output circular 1list queues output lines that have been sent from
the mainframe, and are waiting to print. The input 1list is
smaller, and queues typed-ahead input lines from a terminal.

The SOCKET also contains a pointer to the CCB, which is used to
control the Auto-Driver Channel for output to terminals and
printers. It also contains a pointer to the current input buffer
for a terminal, as well as the Socket Output circular list, which
queues messages for the terrminal generated internally by FREND.
Note that unlike the other circular lists, the Socket Output list
is contained within the Socket entry.

Each protocol record to/from the 7/32 performs a specified
function, as defined. The parameters associated with
each record type are also described below.

Command-type protocol records are transferred only over
control ports (ARGUS, MANAGER, stimulator).

Data-type protocol records are transferred only over
data ports.

Formats of multiple-parameter protocol records.

FP.OPEN 8/PN, 8/0T, 8/01ID, 8/DCP, 8/DID, 2/NH1, &/ NH2, 8/NCT1,
8/NCT2

PN 7/32 data port number

. 0T open originator type (OT.XX)
OID" ID supplied by open originator, (meant

E .. to be returned in ORSP)

. DCP destination control port (CTL.X)

. DID destination.type. (OT.X)")

"NH1 1st chdracter of network host name
NH2 2nd character of network host name
NCT1 1st character of connection type
NCT2 -2nd character of connection type
NH1,2, NCT1,2 are only present for FP.OPENS

6SM #124.1 - FREND

Page T4

FP.FCRP

FP.ORSP

FP.CLO

FP.INBS

sent to ARGUS for NETCNT.

Sent to MANAGER/ARGUS by FREND to indicate a new
user has Jjust requested a connection to open.

Sent from ARGUS to FREND to open a connection for an
inbound network user. In this case, the data port
number has no significance. FREND returns the

data port assigned to the user in the FP.ORSP.

In all cases, an FP.OPEN is acknowledged by an
FP.ORSP with the same OID code.

8/PN, 8/code
= T/32 data port number.
Code = front-end command reply code:
0 =ok
other values are EC.XXX error codes

returned by FREND to MANAGER to acknowledge a front
end command. The command must have been sent to FREND
over a data port from the mainframe.

8/PN 8/1D, 8/0KR
= T7/32 data port number.
ID = ID from oid in open request.
OKR = 0 if open accepted,OPRJ.XX if rejected.

This acknowledges receipt of an open request,

and indicates whether the open was successful or not.
On a reject, the OPRJ.XX code indicates the reason
for the reject.

Sent by MANAGER and ARGUS to FREND to acknowledge

an open request.

Sent by FREND to ARGUS to acknowledge an open for an
inbound network user.

8/PN, 8/DIS
= 7/32 data port number.
DIS = 0 for no disconnect, 2 for a disconnect.

Requests a connection to be closed out.

Sent by FREND to ARGUS or MANAGER to indicate a user
disconnect. (ARGUS and MANAGER must send a CLO back
to FREND to fully close out the connecticn.)

Sent by ARGUS or MANAGER to FREND to request a
connection be closed out. If DIS =2. and the user
has no other connections, he will be hung up.

Note that when sent from FREND, FP.CLO is informative,
indicating a disconnect.

When sent to FREND, FP.CLO is imperative, requesting
the connection be closed.

8/PN 8/NUM
, = 7/32 data port number.
NUM number of input lines for this port in 7/32

FP.OTBS

FP.CPOPN

FP.CPCLO

FP.TIME

FP.CAN

.

FP.INST

6SM #124.1 - FREND
Page 75

When sent from the Cyber mainframe to the 7/32,

"num" = 0 this causes an INBS to be returned from
the 7/32 with "num" set correctly.

An INBS is also sent to the mainframe whenever a user
enters a line, or the mainframe reads a line.

8/PN, 8/NUM
= T/32 data port number.
NUM = number of empty output buffers in data port.

When sent from the Cyber mainframe to the 7/32,

"num" = 0 this causes an OTBS to be returned from
the 7/32 with "num" set correctly. .

An OTBS is also sent to the Cyber whenever the 7/32
prints a line, and there are 2 or less lines
remaining in the port output stack.

when sent to the 7/32 from the Cyber, indicates that
the mainframe wishes to activate this control port.

The record is returned verbatim to the Cyber

as an acknowledgment.

A CPOPEN should be sent from MANAGER and ARGUS to FREND
at least every 30 seconds to prevent FREND from
declaring MANAGER or ARGUS as dead.

when sent to the 7/32 from the Cyber, indicates that

the mainframe wishes to close down this control port.
The record is returned verbatim as an acknowledgment.
This causes all ports connected to this control port

to be disconnected, as if an FP.CLO had been sent out
for all ports connected to the control port.

8/0, 8/4,8/4,8/M,8/M,8/S,8/5,8/M,8/M,8/D,8/D,8/y,8/y
HHMMSS = hours, minutes, seconds.

Mmddyy = month, day, year.

Each character is in ASCII.

When sent to the 7/32 from the Cyber, the 7/32 moves
the data into the current date and time which it
maintains in the LMBI table area.

8/PN .
= T/32 data port number.

.Sent by MANAGER on an input-timeout. It causes

the 7/32 to cancel the current input line and
send backslashes to the terminal. Not effective

-on a port-to-port connection.

8/0, 8/TYPE 32/VALUE

TYPE instrumentation type (IT XXX)

6SM #124.1 - FREND
Page 76

VALUE = instrumentation value

Sent by MANAGER to initiate and terminate the
transfer of instrumentation data.
Sent by the 7/32 with instrumentation data for MANAGER.

FP.GETO 8/PN, 8/SOURCE, 16/PRU1, 16/PRU2
SOURCE = display code source
PRU1. PRU2 = primary/secondary PRU limits

Sent by the 7/32 to request a job to print from the’
specified source. MANAGER will respond with FP.NEWPR.

FP.NEWPR 8/PN, 8/DFP, 16/PRUS, T#8/N, 8/COPIES, 16/PAGELIM
DFP = non-zero if dayfile present
PRUS = PRU size of job
NNNNNNN = job name
COPIES = copies count
PAGELIM = page limit

sent by MANAGER in response to FP.GETO. IF A JOB
fitting the description in the FP.GETO is found,
all fields are filled in. If there is no such job,
all fields are returned zero.

FP.ENDJ 8/PN
Sent by FREND to MANAGER for the "END" command,
and for jobs that exceed page limit. Returned by
MANAGER in response.

FP.EOI 8/PN
Sent by MANAGER at end-of-information on a print
file. Causes FREND to set the PTPEOI flag.

FP.SKB 8/PN, 16/COUNT
Sent by FREND to MANAGER to skip a print file backwards
COUNT prus.

FP.SKIP 8/PN, 16/COUNT
Sent by FREND to MANAGER to skip a print file forward

COUNT prus.

FP.ACCT 8/PN, 8/0WN., 16/PAGES, 32/LINES
OWN non-zero if user supplied own forms
J/ PAGES = pages print count
' LINES = lines print count
Sent by FREND to MANAGER at the end of a print. . Causes. .
MANAGER to dayfile the print charges and return an
FP.ACCT.

FP.ACCT 8/PN, 8/RG, 24/AMOUNT
- RG = rate group of job just printed
AMOUNT = print charge, in pennies

4.34

6SM #124.1 - FREND
Page 77

Sent by MANAGER to FREND in response to an FP.ACCT.
Causes FREND to print the print cost line on the end
of the job. :

FP.COPY 8/PN
Sent by FREND to MANAGER to make MANAGER restart the

print job from the beginning (a new copy).

Formats of data-port protocol records:

FP.EOR text =level number as entered by user, either null,
or 1 or 2 level numbers in ASCII (not binary).
Also sent from 1FP to FREND to indicate end-of-record
on block-transfer files.

FP .EOF No text. Sent from FREND to the mainframe when the
user enters "®EOF". SENT FROM 1FP TO FREND TO INDICATE
end-of-file on block-transfer files.

FP.UNLK text =normal prompt, in ASCII.
FP.FEC text =front end command, in ASCII.

FP.BLDAT Sent from 1FP to FREND to indicate a block data
buffer. The data is packed into 240 character buffers
with appropriately imbedded end-of-line bytes.

PALS Test

The PALS test is an on-line test which c¢an run on any
asynchronous telephone 1line that is not otherwise in use. Only
one line can be tested at a time. The PALS test is invoked by
the $PALTEST,socknum command. Through the $AUTOTEST command, it
can be programmed to sequence through all idle phone lines at
regular intervals. In automatic mode, only lines with nonzero
phone numbers (the SKPNUM field) in the socket are tested.

The test works by raising the BSY command 1line to the PALS
device. 1If the device is connected to a VADIC modem, the modem
will go into analog loop-back mode, and echo on the input side
any data that is transmitted to it.. For this reason, PALTEST
will fail if the device is not connected to.a modem.

The test is driven VBy two ihterrupt service routines - one for

~-input,. and one for output. - The input ISR begins by sending 8

synchronization characters.(FF), followed by 255 data characters:
01, 02, 03, . .. ,FD, FE, FF. The input ISR ignores any
bad-status or busy-status interrupts that may occur as the test
begins. It waits for at least one synch character (FF) with a
status of 00 or 10. After that, the first -non-synch character -
must be 01, 02, 03, ete. :

e C.

6SM #124.1 - FREND

Page 78

4.35

The test will fail if nonzero status appears on the transmit
side, or if any status other than 00 or 10 appears on the receive
side. Some modems which operate satisfactorily in production
generate a large number of receive-side interrupts with a status
of 08 or 18 (busy). A test option causes the test to ignore
these interrupts. The command, "#SET,INPINT.1" will cause these
modems to pass. "#SET,INPINT,0" does the reverse.
e eci a

The standard format tape at MSU is punched as follows:

Channel 1: Top of form

Channel 2: Next 1/2 page

Channel 3: Next 1/3 page (6 1pi only)

Channel U4: Next 1/U4 page

Channel 5: Bottom of physical page

Channel 6: Next 1/6 page (6 lpi only)

Channel 7: Next 1/3 page (8 lpi only)

Channel 8: next 1/6 page (8 lpi only)

Channel 9: Unused

Channel 10: Unused

Channel 11: Unused

Channel 12: Last line of form
At 6 lines per inch density, there are 66 lines on an 11-inch
page. At 8 lines per inch., there are 88 1lines. Because of the
difference in spacing, there is not a perfect correspondence of
page position for each line in the two densities. A "point of
coincidence" 1is a vertical position on the page where a line
occurs at both densities - these points are spaced at 1/2-inch
intervals. Line 4 at 6 1lpi is a point of coincidence, which

corresponds to line 5 at 8 lpi. The next point is line 7 (6.1pi)
or 1ine 9 (lpi). - In order for a punched hole on a format tape to

"work in both densities, it must be punched on a point .of

coincidence.

There are two peculiarities in the standard format tape that
arise from the "point of coincidence" problem:

i. Channel 5 (Bottom of - physical page) should, strictly4
speaking, be punched in line 66 (6 1lpi), but since this is

6SM #124.1 - FREND
Page 79

not a point of coincidence, the hole 1is punched in the
nearest one, which is 1line 1. Thus channel 5 1is not
actually the top of the physical page, not the bottom. For
this reason, the "5" carriage control does not perform as
advertised, but sends ' the printer to 1line one of the next
page, instead of the bottom. The printer can be aligned so
that line one is on the page break.

The 1/6, 1/3, 2/3, and 5/6 points on the 11-inch page do
not ocecur at points of coincidence. For this reason, the
standard tape uses two channels each for next-1/3 and
next-1/6 carriage controls. Channels 3 and 6 are used if
the density is 6 lpi, and channels 7 and 8 are used at 8
lpi. The printer software keeps track of the density as it
changes, and uses the appropriate tape channel for the 3,
6, I and F carriage controls.

By channels, the standard tape 1is punched as follows (the line
numbers are 6 lpi numbers, unless otherwise shown):

Channel Meaning Lines Punched
1 Top of form y
2 Next 1/2 page 4, 34
3 Next 1/3 page (6 1lpi) 4, 24, uy
y Next 1/4 page 4, 19, 34, 49
5 Bottom of physical page 1
6 Next 1/6 page (6 1pi) 4, 14, 24, 34, 44, 54
7 Next 1/3 page (8 1pi) 5, 32, 59 (8 1pi)
8 Next 1/6 page (8 1pi) 5. 18, 32, 45, 59, 72 (8 1pi)
9 Unused y
10 Unused y
11 Unused i
12 Last line of form 64

Non-standard carriage control tapes may be punched in any
fashion, as long as a few rules are observed:

1.

_Every channel must be punched at least once, at a point of
coincidence, to prevent paper from running away when a
carriage control character references an unused channel.

Channels 1 and 12 must always be punched for top- and
bottom-of-form, respecively, since the printer hardware
uses these channels for its auto-page-eject function.

6SM #124.1 - FREND

Page 80

5.0

N

For any format tape, standard or non-standard, the proper
carriage control character for a given channel may be determined
by the following table:

Pre-print VFU Post-print
Character Channel - Character
1 1 H
2 2 I
3 3 (6 1pi) Jd
3 7 (8 1pi) J
4 y D
5 5 E
6 6 (6 1pi) F
6 8 (8 1pi) F
T 12 G

Pre-print characters cause the page to skip to the indicated
channel before the line is printed. Post-print characters cause
the skip to be one after the line is printed.

Lower-case alphabetic carriage-controls are recognized the same
as their upper-case equivalents.

Qperator communications ang procedures,

A full description of all applicable operator communications and
procedures can be found in the FREND SYSTEMS OPERATOR GUIDE.

5.1

5.2

FREND loading,

FREND 1is loaded automatically by MANAGER. No operator
intervention is required. MANAGER automatically selects th
proper version of FREND, as explained in 6SM 135.

FREND dumping,

FREND is automatically dumped by MANAGER whenever 1FP detects
that FREND is no longer running. This causes MANAGER to abort,
after which DUMPFE is automatically run. FREND 1is also
automatically dumped at each deadstart. This is done in case the
previous crash was .caused by 1FP, in which case no 7/32 dump is
possible. In the event of a parity error while dumping, DUMPFE
will pause and request the operator to disable parity checking on

" the 7/32 interface. After this is done. the operator should give

DUMPFE a GO, at which time the dump will be retried.

6.0

7.0

6SM #124.1 - FREND
Page 81
5.3 SENDALL.

A message. may be sent to all front-end users even though the
mainframe is not operational. This is generally used to give
users information on mainframe problems. The SENDALL command is
used for this. The format is:

$SENDALL, message.

5.4 SENDBUS and BUSIDLE.

A message may be sent to all front-end users connected through a

particular bus. This is generally used to warn users that the
bus is about to be turned off. The format of the SENDBUS command
is:

%SENDBUS, X ,me ssage.
Where X is the identifier of the switchable bus.

The BUSIDLE command will automatically send a pre-formatted
series of messages to warn users that the bus is being shut off,
and it will follow these with the command to turn the bus off.
The format for this command is:

YBUSIDLE,X.

Where, as before, X is the identifier of the switchable bus.

5.5 FREND console commands,

Several FREND commands are valid only from the 7/32 console
teletype. In general, these are of use only to systems
programmers. They are described in detail in the FREND OPERATOR
GUIDE. There are also a set of commands for detecting and
dealing with line problems, also described in the operator guide.

User aspects.

The major user benefits from the front-end system are the increased
flexibility and capability for support of various terminal types =nd
attributes. Also of major importance is the support of long input
lines, and of full binary input/output. These features are enumerated
in sections 2.2 through 2.7. ’

Because FREND is a separate entity from the mainframe, there are no
changes to the system files on the mainframe..

6SM #124.1 - FREND
Page 82

8.0 References,

SMP 28 - MSU front-end.

SMP 49 - MSU front-end, phase 1.

SMP 60 - Front-end command and control.
6SM 94.1 - banner messages.

6SM 131 - MERIT interactive support.
6SM 134 - 1FP/CP2TT.

6SM 135 - MANAGER and frends.

FREND OPERATOR GUIDE.

INTERDATA 32-BIT SERIES REFERENCE MANUAL.
MODEL T7/32 REFERENCE MANUAL.

FREND BATCH PRINTER OPERATOR GUIDE.
BATCH PRINTER HARDWARE GUIDE.

This document was originally written by Robert F. Bedoll,
and updated by David M. Katz and Kenneth R. Josenhans.

Written by: @0 'K~ QM/\LU':\C lL-

John K. Renwick

Approved by: ﬂjd%\

/Richard R. Moore

. 6SM #124.1 -~ FREND
Page 83

Appendix A - FREND routines.

A 1list of all FREND decks, and a brief description, follows.
Note that each IDENT contains routines which are functionally
similar. When adding new routines, the general scheme
illustrated below should be preserved.

FREND FREND version number and global comments.
Also contains the FREND correction history.

INITIAL all initialization processing. This is the
first routine to execute after FREND is loaded.
It sets up all tables.

BANNER formats the banner pages for the printers.

BUFFER manages the FREND buffer circular stacks.
Fills BF80 and BF240, and empties BFREL.

BUS contains subroutines to use the bus switch and the
bus status table.

CLOCK maintains the FREND time-of-day clock and the
current date. Driven by the hardware line-
frequency clock.

CLOSE all close processing for ports and sockets.

COMMAND contains processing for all the FREND commands.

CPCLO processing for control port close., control port
open, and control port activity (the 60 second
activity timeout on a control port)

CTLPT processes all control port messages from the
Cyber mainframe.

DEVICE contains the definitions of -all hardware devices
connected to FREND. . Used only at initialization time.

ECOBUF processes the CTRL-Q functioﬁ, which echos the
current input buffer back to the user. '

ERROR issues an error message and dumps registers
to the console TTY for FREND-detected non-fatal
errors. ’

FECMD does initial processing for front-end commands,
. . F S _

6SM #124.1 - FREND

Page 84

GETPRT
INESC

INST

INST65
IOMSG

ISRROUT
ISR65

LOGMSG

MANAGE
MISS
MONITOR
NEXTLIN
OPEN
OUTISR

PALISR

PARSER

PALTEST
PPIOCL

_ PREPRT

calling upon COMMAND to do the actual processing.
asks the mainframe for new print jobs.

handles the input abort (escape) process.

a collection of all instrumentation counters
maintained by FREND. This contains data cells only,
no executable code. ’ : :
sends instrumentation data to the mainframe.

issues I/0 device diagnosties ("paper out").

general interrupt service routines,

containing processing for all illegal interrupts,
including FREND crashes.

processes all interrups from the mainframe.

An interrupt is generated whenever 1FP reads
a record from, or writes a record to, the 7/32.

updates and delivers the login message.

the MANAGER for FREND allocatable memory.
Handles all requests to get and return memory
blocks.

a collection of miscellaneous subroutines.

the FREND MONITOR. It initiates all FREND
tasks.

unpacks block-data buffers into line buffers
(currently called only by PRINT).

all open processing for socket-to-port and
port-to-port connections.

the interrupt service routine for output to
the terminal (driven by the CCB)

the interrupt service routine for all
input from the terminal. Interrups on
each input character.

general command line parser for FREND

-command processing. - :

the PAL test routine.

processing for all port-to-port connections.

performs pre-print_setup functions.

6SM #124.1 - FREND
Page 85

PRINT the batch printer driver. Processes every output
line to printers. Initiates transmission of data.
PRSTAT formats the response for the "PRNTSTAT" command.
PRTISR the interrupt service routines for printers.
PRTMISS contains miscéllaneous subroutines for the printers.

PRTTST performs on-line printer diagnostics.

SENDCP sends various protocol records to mainframe
control ports.

SKINCL socket input control. Processes every
input line from a socket (terminal).

SKINIT socket initialization. Resets a socket for a
new user.

SKOPEN contains the various tasks associated with
answering a phone and establishing an initial
connection.

SKOTCL socket output control. Processes every output
line to a socket, and initiates transmission of
the data to the terminal.

SKXL the socket input translation tables.

SOCMSG sends messages from FREND directly to a socket.

SVCROUT supervisor routine processor. Processes all
task requests.

TIMER manages the timer queue.

TRACE issues the FREND trace messages.

Each FREND routine is relocatable. All linkage is
done through entry points, using the CYBER loader for

linkage and relocation. A full load map should be consulted
to locate all entry points and their appropriate ident.

R NP Y P

6
Page

#124.1 < FREND
86

Appendix B - FREND tasks.

The following is a list of all tasks, with a brief description.
The IDENT containing the task is given in parenthesis.
\
CKTIMR (TIMER) remove expired entires from the timer chain,
: and request the task. : ‘ '

CLOCK (CLOCK) increment the time-of-day clock by
1 second, adjusting the date if necessary.

CLOFPT (CLOSE) close a connection from the data port
side.

CLOFSK (CLOSE) close a connection from the socket side.
CONMSG (SOCMSG) send a message to a connection.

CPACT (CPCLO) control port activity 60 second timeout.
CPQLQ (CPCLO) control port close processing.

CPOPEN (CPCLO) control port open processing.

CTLPT (CTLPT) processes all control port messages
from the mainframe.

ECOBUF (ECOBUF) processes the CTRL=Q - echo current
buffer.

ERRMSG (ERROR) issues the message and register
dump generated by the ERROR macro.

FECPT (FECMD) process a front-end command from a
data port.

FECSK (FECMD) process a front-end command from a socket.
GETPRT (GETPRT) get a print file from the mainframe.
INESC (INESC) process the escape (abort) function.

INST65 (INST65) sends instrumentation data to
the mainframe.

IOMSG ~ .(IOMSG) issue an I/0 device diagnostic. -

MSGCP (SENDCP) send a pre-formatted message to a
control port.

OPENPP (OPEN) open a port-to-port connection.

OPENSP
PALATO
PALTDY
PALTST
PMMSG

PPESC

PPIOCL
PREPRT
PRINT

PRTTST

PULSE

RELBUS
RTRV

SENDCP

SENDIO
SETBD
SINT

SKCARR
SKINCL

SKINIT

' SKOPEN
SKOTCL

SOCMSG

6SM #124.1 - FREND
Page 87

(OPEN) open a socket-to-port connection.

(PALTST) processes the autotest sequence.

(PALTST) termination processing for the PAL test.
(PALTST) initiates the PAL test.

(IOMSG) issue a message for the "PM" carriage control.

(INESC) process an escape (FP.ABT) on .a port-to-port
connection.

(PPIOCL) port-to-port input/output control.
(PREPRT) pre-print processing for printers.
(PRINT) batch printer driver task.

(PRTTST) batch printer on-line diagnostic test.

(TIMER) runs every 1/4 second and clears the
H.FEDEAD flag.

(BUS) releases a bus switch reservation.
(RTRV) processes the CTRL-U - retrive current
line.

(SENDCP) constructs certain messages for
control ports.

(IOMSG) send a message to I/0 terminals.
(SKINIT) autobaud timeout task.
(PRTMISS) simulate an interrupt on a device.

(SKINIT) ensures that a carrier is present 1/4
second after a user connects.

(SKINCL) socket input control - processes every
input line.

(SKINIT) initlallzes a socket to answer 'a call.

(SKOPEN) returns the header message and opens a
connaotion fo MISTIC. v e

(SKOTCL) socket output control. Processes every
output line.

(SOCMSG) send a message to a socket.

6SM #124.1 -~ FREND -
Page 88

TIMMOR (TIMER) increase the size of the timer chain.

TIMR (TIMER) sort a new entry onto the timér chain.

6SM #124.1 -~ FREND
Page 89

Appendix C - FREND interrupt service routines.

The following is a brief description of all the ISR's
in FREND.

I#ARITH (ISRROUT) arithmetic fault.

I#MMALF (ISRROUT) machine malfunction (parity error). .
Also entered when 1FP kills the 7/32.

I4PROT (ISRROUT) protect mode violation.
I#QUEUE (ISRROUT) system queue interrupt

I#DISP (ISRROUT) console display interrupt.
Resets W#DISP, the address of the word to
display on the front panel display.

I#ILLEG (ISRROUT) illegal instruction interrupt.
This is the FREND intentional crash processor.

I#NODEV (ISRROUT) immediate interrupts for which there
is no device are trapped by this.

I#LFC (CLOCK) processes the LFC (line frequency clock)
interrupts which are used to maintain the time-of-day

clock.

I#PIC (TIMER) processes the PIC (programmable
interrupt clock) interrupts. The PIC is used to
maintain the timer queue, holding all delay task
requests.

I#DEVS (ISR65) processes all interrupts from the mainframe
interface. These are generated by 1FP whenever it
reads a buffer from, or writes a buffer to, the 7/32.

I#PAL (PALISR) processes the interrupts from the
input side of the PAL when it is idle, ringing,
or in autobaud detect phase. It does not process PAL
interrupts for normal PAL input.

PALMIN (PALISR) processes the character-by-character
interrupts for each input character when the PAL is
in normal input state.

This is the routine which accepts user input. =

I#CCB '(OUTISR) processes the interrupt when the PAL
output CCB exhausts a buffer, or encounters a bad
status. This routine switches output buffers and
processes the right margin for all output to a
terminal. :

63 #124.1 - FREND
Page 90

I#BUSSW (ISRROUT) Bus switeh interrupt routine.

I#PRINT (PRTISR) processes the interrupts from the printers.
Bad status, end-of-buffer (with buffer switching), and
unconditional transfer (ADC switched off) are
handled here.

Translate table routines (OUTISR) These routines
are entered when the output CCB is about to send
certain characters. The specific characters and the
associated routines are defined in the CCB output
translate table, established by INIOCT (OUTISR).

All ISR addresses are set by INITIAL.

For debugging purposes, a circular list of the last 20 interrupts is
maintained at entry point INTSTK. This 1list is maintained by the
EXITINT macro and it may be read by BUG. (PIC and LFC interrupts are
not stored.)

SECTION

SECTION MAP

1.0 Introduction.

2.0 External reference specifications.

2.1 Interactive support.
/

2.2

2.3

3.0 System programming considerations.

3.1
3.2
3.3

2.1.1
2.1.2
2.1.3

2.1.4

Batech
2.2.1
2.2.2
2.2.3
2.2.4
FREND
2.3.1
2.3.2
2.3.3
2.3.4

Texts.

Echoplex operation.
Typed-ahead input.
Line length.

Character sets.

Control characters.

printer support.

Character sets.
Job recovery
Line length.

Special features.

commands.

User commands.
I1/0 commands.
Operator commands.

Console commands.

FREND program library.

FREND installation.

3.4 Overlay structure.

3‘5
3.6

POST732.

FREND installation.

6SM #124.1 -~ FREND
Page 91

11
11
12
12
12
13
13

6SM #124.1 - FREND

Page 92

SECTION

3.7

SECTION MAP

FESYM - FREND symbol text.
3.7.1 FESYM macros.
3.7.2 Use of FESYM macros.

3.7.3 Symbol and c¢oding conventions.

4.0 1Internal reference specifications.

4.1
4.2
4.3
4.y

4.5

4.6

4.7

FREND organization.

Operating system structure.

Tasks.

ISR (Interrupt Service Routine).

Flow of control.

4.5.1 Interactive subsystem.
4.5.1.1 Steady state condition.
4.5.1.2 Dial-in.
4.5.1.3 Hang-up or disconnect.

4.5.2 Batch printer subsystem.
4.5.2.1 Steady state condition.
4.,5.2.2 Connecting the printer.
4.5.2.3 Starting a new print job.
4.,5.2.4 The end of a print job.
4.5,2.5 Disconnecting a printer.

Connections and the ID.

Initialization.

ﬁ.7.1> Transfer of control.

4.7.2 Device initialization.

4.,7.3 LMBI table creation.

13
13
14
14
15
15
15
16
18
18
19
19
21
23

24

24

25
26
27
27
28
29
29
29
30

SECTION
4.8

4.9
4.10
4.1

4,12

4.14
4.15
4.16

417

SECTION MAP

Open processing. \

4.,8.1 OPENSP - open socket to port.

4.8.2 OPENPP - open port to port.
4.8.3 Oﬁen errors.
Close processing.

Command processing.

Answering a phone line.

Socket output processing.

4.12.1 SKOTCL - socket output control.

4,12.2 OUTISR - output CCB processing.

4.12.3 Right margin processing.

4.,12.4 Non-Printing Character Processing.

Socket input processing.
4.13.1 PALMIN - normal input.
4.13.2 Echoing of input.
4.13.3 Special input characters.

4.13.4 SKINCL.

PPIOCL - port-to-port input/output.

SKINIT - socket initialization.
Abort processing.

Switchable Bus processing.
4.17.1 Initial set-up.
4.17.2 Tuﬁhiﬁg’a bus off.

4,17.3 Turning a bus on.

6SM #124.1 - FREND
Page 93

31
31
32
32
32
34
35
37
37
39
40
41
43
43
43
4y
45
46
46
u7
47
48
48
48

4.18 SENDCP - control port records to the mainframe. 4g

6SM #124,1 - FREND

Page 9l

SECTION

4.19
4.20
4.21
4. 22

4.23

4.18.1
y
n

b,

4,

Control
Control
Sending
General
Genéral
4.23.1
4.23.2
4.23.3

4.23.4

SECTION MAP

FP.OTBS - need-data processing.
.18.1.1 MANAGER. .

.18.1.21 FP.

18.1.3 SENDCP.

.18.1.4 SKOTCL/NEXTLIN (PRINT).
.18.1.5 CTLPT.

.18.1.6 BUFFER.

.18.1.7 INESC.

.18.1.8 PRINT (backspace processing).

18.1.9 PPIOCL.

port messages from the mainframe.
port open/close.

messages to sockets.

7/32 interrupt processing.
1FP/FREND protocol.

Read (7/32 to mainframe).

Write (mainframe to 7/32).
Interlocks.

Commands.

4.23.5 Buffers.

4.24 The FREND MONITOR.

4.25 Supervisor call routines.

4.26 The timed request processor.

4.26.1 Delayed task requests.

4.26.2 PIC operation.

49
50
50
51
51
51
52
52
52
52
52

53

© 53

54
55
55
55
56
56
56
57
57

- 58

58
58

5.

0

y,
L,

n
n

27
28

.29
.30

.31

.32
.33
.34
.35

SECTION MAP

4,26.3 Delayed request queue.
4,26.4 Unsolved problems.
4.26.5 FREND timer components.
Trace.
Buffer management.
4.28.1 Free buffer lists.
4.28.2 Buffer full condition.
4,28.3 Error detection.
Management of allocatable memory.
FREND core layout.
4.30.1 Low core.
4,30.2 LMBI (shared memory).
Major data structures.
4.31.1 SOCKET.
4.31.2 PORT.
4.31.3 Buffers.
FREND Table Relationships
FREND protocol records.
PALS Test

Printer Format Tape Specifications

Operator communications and procedures.

5.

1

5.2

5.
5.

3
y

FREND loading.
FREﬁD'dumping.
SENDALL.

SENDBUS and BUSIDLE.

6SM #124.1 - FREND
Page 95

59
60
60
61
62
63
64
65
65
66
67
68
70
70
70
71
72
73
17
78
80
80
80
81
81

OSM #124.1 = FREND
Page 96

SECTION MAP
SECTION
5.5 'FREND console commands.
6.0 User aspects.
7.0 System file changes.

8.0 References.
Appendix A - FREND routines.

Appendix B - FREND tasks.

Appendix C - FREND interrupt service routines.

83
86
89

81
81
81
82

