STRAP 1.2
STRAP 2.3

STRAP 3.5

STRAP 4.2

STRAP 5.2

STRAP 6.2
STRAP 7.4
STRAP 8

STRAP 9.4

STRAP 10.2
STRAP 11.2
STRAP 12. 4
STRAP 13.2
STRAP 14.3

STRAP 15.1

Back up procedures (for 6500)
Installation of CDC Products and PSR Code

Installation of Mchigan State University
Modi fi cati ons

Witing Software Mdification Documents

Procedures for Efficient Mintenance of
the Systens Qoup tape library

Sof tware Modification Proposal Docunent
Monthly Reports - Content and Style

Coding Practices and Conventions

Sof tware STIR Procedures

MN MD Mnos

D sk Labeling and Fl aw ng

Wiat to do when there is a Hardware Failure
Protection of D sk Packs

Qui delines for Proper Machi ne Room Conduct

06/ 07/ 84
06/ 17/ 82

06/ 07/ 84

06/ 04/ 84

06/ 05/ 84

06/ 08/ 84

06/ 07/ 84

06/ 08/ 84
01/ 22/ 78
06/ 04/ 84
06/ 07/ 84
06/ 07/ 84
06/ 06/ 84

06/ 07/ 84

M chigan State University
Conput er Laborat ory
Systenis Tasks, Responsibilities and Procedures
Nunber 1.2
Code Back Up Procedure

June 7, 1984

Definitions;:

Programlibrary tape (PL). A tape, that when processed by the UPDATE program
generates the source for a set of prograns. Al so referred to as old program
library or OLDPL. There are generally multiple files on each tape. Each is
an UPDATE file for a collection of related prograrns.

Deadstart tape (DS). A tape that can be loaded into the machine and used to
execut e prograns.

Latest SystemDescription (LSD). This is a notice used to transfer a DS tape
from Systenms Programming to Qperations. Al LSD s are nunbered, nn.mmwhere
nn is the major LSD nunber and mmis the minor LSD nunber. See STRAP 3 for
nore details.

Correction Deck Library (CDL). This tape contains a file for each PL used at
MBU. Each file is UPDATE type data with the master control character changed
from"*" to "$". Each correction ident on a PL has an identically named deck
on the corresponding CDL. Thus, if one desires a copy of the cards for ident
JSF1SJ3, the procedure is to get the appropriate COL (use CGETPL with the COL
parameter, i.e. GETPL, SCOPE, CDL.), do an UPDATE (Q *=$$$$, R=C) with an i nput
card of $COWPI LE JSF1SJ3. -

NOTE: ldents that are purged fromthe PL are al so purged fromthe CDL.
I. n-site backup
These tapes will be stored in the systens progranming tape library.

A A cycle of at least 10 DS tapes are nai ntai ned. The description
of the tape, when it is given to production, wll specify the
current DS tape.

B. Acycle of 4 tapes is kept for each PL tape. This contains the
last version of the tape for each of the last 2 major LSDs, the
PL tape of the nost recent minor LSD, and the current PL tape.

C The CDL tape is backed up along with the PL tapes, but a cycle of
10 tapes i s maintai ned.

Copyright, 1984, Mchigan State University Board of Trustees

Code Back Up Procedure - STRAP #1.2

Page 2

G f-site backup

Ther e

A

are two purposes for the off-site backup:

To get operations up and going after a "disaster." The deadstart
tape will acconplish this.

To get the systens group up and going after a "disaster." The
PL, CDL, and PFDUWP tapes will acconplish this.

The procedure for taking backup tapes to off-site storage is quite
straightforward with few problens or inconsistencies associated wth

it.

nont h,

A

This procedure should be done at the beginning of each cal endar
usual ly within the first five working days.

Insure that the nost recent LSD has been tied off. This can be
done by entering STAT fromany Systens account. If all jobs have
been conpleted successfully, then the backup procedure can be
started.

Login to SN or SYSGEN on probl em nunber 016115.

Enter: START, BACKUP. & START, TESTPL. Each entry wll
initiate a batch job. If you are not using the ID SYSCGEN, a
war ni ng nessage will come up. If you want the jobs to run
anyway, enter "YES' when pronpt ed.

BACKUP copies the current PL and COL tapes to the backup tapes.
TESTPL runs UPDATE on the current PL tape set to insure that each
can be read and updated. The BACKLP job wll wite onto the
tapes DEAD, SOCPEM BASI CEP, DARFAR AMACRO, MOSSS, SCPPLS, COL,
VI MPFS, and VI MDOC.

Wen these two jobs have been conpleted successfully then the
Mont hly AF dunp needs to be run. The person initiating the
backup procedure nust nmake a request to Qperations in-order for
this to be done. The operator will dunp the authorf file to the
AFMONTHLY t ape. :

Note: the UPHALX and UPAxxx tapes are not witten by Systens. It
is merely our responsibility to take these tapes to the vault.
UPHALX tapes are maintai ned by User Services. UPAXxx tapes are
assigned to individual users, who have responsibility for the

contents of their own tapes. (Qurrently, wuse of the user
off-site backup service is very low. Soon Qperations wll have
their own off-site vault and will do the transporting of the

UPAXXX t apes.)

Wien this step is conpleted then the backup tapes can be taken to
off-site storage. Qurrently the tapes are taken to the safety
deposit vault in the Mchigan National Bank tower in downtown
Lansi ng.

Code Back Up Procedure - STRAP #1.2
Page 3

There are currently fourteen tapes to be taken to off-site
st or age. At the present tine, nost of the tapes are |ocated at
the lower left corner of tall tape rack immediately to the [left
of the 750 operator's console in the machine room Tapes with
the VRNs specified below are to be taken to off-site storage:

1. DEAD - Deadstart tape
2. SCOPEM - PL tape
3. BASICEP - PL tape
4. DARFAR - PL tape
5. AMACRO - PL tape
6. MOSSS - PL tape
7. SCPPLS - PL tape
8. (L - Correction Deck PL tape
9. VIMPFS - This PFDUMP tape contains nunerous pernmanent
files:
a) The SIN and SYS Hal libraries, and the main HAL
l'ibrary.
b) The SYSTEMS, SIN, A F. Uility, and DUMPTAP
l'ibraries.
c) The versions of FREND on permanent files.
d) Files containing information about the SIN listing
t apes.

e) Various files needed for systens generation.

10. UPHAL1 - U C HAL files

11. UPHAL2 - U C HAL files

12. UPAL100 - User files for off-site backup
13. VI MDOC Syst ems docunent ati on PFDUMP t ape
14. AFI\/[]\ITHLY - AF dump tape

It should be noted that each tape has a duplicate tape in the

vaul t. The two sets of tapes are labelled "Set 1" and "Set 2".
At any time, one set is in the machine roomand one set is in the
vaul t.

WRI TTEN BY: den J. Kine and M chael H. G ddi ngs

APPROVED BY: Ri chard R Mbore

M CH GAN STATE UN VERSTI Y
COVPUTER LABCRATCRY
SYSTEMS TASKS, RESPONSI Bl LI TI ES AND PROCEDURES
No. 2.2
My 16, 1979

Installation of CDC Products and PSR Code

| ntroducti on

This STRAP descri bes the various procedures which nay be used to install CDC code
into the MBU operating system The enphasis here is on the systeminstallation
procedures; however, these procedures shoul d be reviewed while working on such a
proj ect.

Installing a New Product or Program.Librar

The follow ng procedure is used to install a new CDC product or programlibrary.
If the new product is just a new version of an existing product, you nmay want to
treat it as an update to the current product, since the existing installation
deck and MBU nodifications may be rel evant.

Step 1. (btain the COC PL fromthe Systens Integrator. This tape wll be a
copy of the latest CDC PL tape released by CDC, and will be on a UM
t ape.

- Step 2. Generate the installation procedure for the product. See the
Install ati on Handbook to obtain inportant information about the product
installation and to find the location of the current CDC installation
sequence. '

Sep 3. CGenerate the new product, naking any changes needed to the code and
installation producedure and test the product.

Sep 4. Send the necessary information to the Systens Integrator (via code
review). This includes:

1. The CDC PL nane or VIMtape nunber (fromStep 1 above).
2. The nodifications made to the PL (see STRAP 3).
3 The installation procedure used. A listing of the control cards
used is sufficient. This listing should nmake the follow ng clear:
- Wiat texts are used, and where (what PL) they conme from if
not fromthe existing system
- What conpilers or other utilities are needed fromother PL's.
- What texts, binaries, libraries, etc., are created for use by
other PL's.

STRAP No. 2.2
Page 2

- What binaries go onto the system and, on what libraries.
Updatin istin L To a her PSR Leve

Wen installing a new |l evel of CDC code, it is inportant to check for conflicts,
duplication, etc., between new CDC code and existing MsU nodifications to the
program library. In particular, look for "overlapping corrections" indicated by
UPDATE, and for resequencing or restructuring of the programlibrary or product.

The procedure for updating a COC PL to the highest PSR level is sinlar to that
for a new PL, with a couple possible exceptions. First, the installation
procedure listing is not needed if there are ria changes. See the "Installation
Procedure" section for details on finding the current MSU installation procedure
deck. Second, the existing MSU nodifications to the product need to be handl ed.
There are two primary nethods for doing this, which are detailed below The
choice of methods nust be nade clear on the gift certificate acconpanying
instal l ation.

Method 1. This nethod can be used if there are few existing modifications for
the program library, or if maj or changes are needed to the existing
nodi fications. This is the sinpler nethod.

Step 1. Retrieve the current nodifications from the correction deck
library. The followi ng control cards will acconplish this:

CETPL, pl narre, COL.
UPDATE, F, *=$3$$$.
(nodifications remain on COMPILE file)

Step 2. Place the COL nodifications in an EDTCR work file, and revise the
nodi fications as necessary. This may include deleting entire
nodifications or rewiting others. |f a substantial portion of a
nodification is rewitten, the ident card and correction history
should reflect the name of the person revising the nodification.
Any "*/" LSD comment cards other than "*/ D' cards should normally
be renoved, since the nodifications are just being reinstalled.

At this point, the nodifications are treated just as any new
nodi fications would be. If you desire that sone or all of these
nodi fi cati ons not. be subject to code review, and you have nade no
changes to them nmark that clearly on the listing submtted for
code revi ew,

Met hod 2: This method is used only if there are a large nunber of existing
nodi fications and they do not require najor changes. It is not as sinple to set

up, but reduces the nunber of nodifications shown in the LSD, and reduces the
size of the WPIC listing sent to code review. The existing nodifications still
need to be checked for duplicates, conflicts, etc.

Step 1. Retrieve the (DL nodifications and apply themto the COC PL,
generating a new "working" program library. | f this is
acconpl i shed with no UPDATE errors, proceed to step 3.

STRAP No. 2.2
Page 3

Step 2. If there were UPDATE errors in attenpting to apply the COL
nodifications against the (CDC PL, such as references to
non-exi stent decks or idents, it is necessary to nodify the COL
nodi fications before the second UPDATE. These nodifications shoul d
be the mnimumnecessary to successfully generate a "working" PL.

Renenber that the control character for the COL PL is "$". |If a
nodification has many UPDATE errors, it is best to just purge it
and reinstall it as a new nodification.

Wien preparing the product for code review, the UPDATE output from
this first UPDATE nust be included. A so indicate what pernanent
file and line range contai ns these nodifications.

Step 3. Wing the "working" PL as the base PL, generate any new
nodifications that are needed. This is where changes should be
nade such as correcting problens with CDL nodifications which did
not produce UPDATE errors, but do not produce the desired result.
If anodification is outdated or needs substantial rewiting, it
shoul d be purged here, unless it had to be purged in step 2.

A sanpl e deck structure is shown bel owto show how to use this procedure.
Job 1 - create "working" PL.

CETPL, pl narre, COL.

UPDATE, F, *=$$$$, C=MCCS.

RETURN, CLDPL.

REQUEST, ALDPL. ff1, VRNEM Mkxx. CDC PL t ape.
UPDATE, N, C=0, | =MODS.

PUT, NEWPL=NEWPSRLEV.

*BECR
(nodifications, if any, to CDL, e.g.:)
$PURGE abc

$/ ABOVE MDD FI CATI ON REFERENCES NON- EXI STENT DECK
Job 2 - UWse "working" PL to generate product

CET, OLDPLr NEWPSRLEV.

UPDATE, . . .
(Rest of installation sequence.)

*BECR

*PURGE xyz plname (nodification no | onger desired)
(other nodifications)

ILnstall atjon Procedure

The creation of the installation procedure for a product deserves careful
attention, since this will contribute nuch to the success of the project. This
section gives sone helpful hints for determining and creating the correct
installation procedure.

STRAP No. 2.2
Page 4

The CDC installation control card sequences are contained on the BCC tape,
usually as the third file. The control cards are contained on an UPDATE PL with
a master control character of "=". The decks have nanes of "PLnnl" where "nn" is
the CDC PL nunber. Note that these decks are general-purpose installation decks
meant for all CDC sites, and contain a nunber of options, selected by UPDATE
=DEFINE directives. Al of these nmake the decks sonewhat inconprehensible, but
with sone effort, sone sense can be made out of them Refer to the Installation
Handbook for details on the various options and for other inmportant installation
i nformati on.

For PL's that are not new to MSU, there are installation decks naintained by
Systens Integration which describe the installation procedure. These decks are

maintained on a HAL Ilibrary (SIN and have deck names of the form |I*pl nane
Typically, there are at least two parts to any installation procedure, wth
subsequent parts nunerically suffixed. These nanes are also limted to 7
characters. The decks will normally be retrieved to local file "plname". For
example, to list the COWASS installation decks, the follow ng control cards

woul d be used:

HAL, L*SI N, | COMPAS, | COVPA2.
LI STTY, | =COVPASS.

The follow ng description outlines the types of control cards or control card
sequences which conprise an installation deck. Not all of these occur for every
PL, and sonetines additional processes are needed.

1. Get the PL and do the UPDATE. The PL is either the VIMcopy of a CDC
tape or the working PL. Typically, an UPDATE, F is desired

2. Retrieve any texts, conpilers, utilities, and user libraries needed for
this installation procedure. These are created by other installation
procedures or are available fromthe running system

3. Conpile or assenble the source. This will <create binary files and
l'istings of the product.

M Load the binary, creating an absolute program if applicable. There nay
be other necessary post-processing necessary to generate the desired
finished binaries.

5. Save any texts, conpiler binaries, utilities, or subroutine libraries
which are generated by this procedure and needed by other installation
procedures. Subroutine libraries are typically saved in ED TLIB user

library format.
6. Save the binaries which are needed for installation on the final system
(for testing purposes). This nmay be included in #5.

7. Process the listings, map files, etc., if needed. This may include a
UPIC or a full listing or saving the listing for |ater processing.
Sunmary

The procedures described here are designed to ensure that the necessary itens are
nmade available and ready so that the Systens |Integrator can incorporate the
finished, tested product into the system The process is general enough to allow
for the wide variety of installation procedures required

STRAP No. 2.2
Page 5

If any deviations are needed from the procedures outlined in this STRAP,
especially regarding the various itens given to the Systens Integrator, these
devi ati ons nust be discussed in advance with the Systens |Integrator.

In genér al, the actual system generation will be acconplished using only the
itens specified above as being needed by the Systens |ntegrator. Test binaries,
PL's, etc., are norrmally not wused except in cases where a dependency problem

nakes it necessary.

1.0

2.0

3.0

4.0

M chigan State University
Conput er Labor at ory
System s Tasks, Responsibilities and Procedures
Nunber 3.5
Installation of Mchigan State University Mdifications

June 1, 1984

| nt roducti on

In order to avoid confusion concerning nodifications nade to the
different operating systens naintained by the Systens Programmng G oup a
definite procedure has been defined and is used in all cases. This STRAP

descri bes the procedure.

SMP requirenents

Any user visible change or any major nodification nust have a Software
Modi fication Proposal (SMP) witten and approved before the nodification
can be considered for installation. The SMP should be witten before the
nodi fication is coded but it MJST be approved before Systens Integration
will accept the "Gft" Certificate. See STRAP 6 for SWP details.

"Monday List" requirenents

This is a list of all nodifications to all systens that are not m nor bug
fixes. This list is published the day before the Conputer Lab staff
neeting. Al nodifications except mnor bug fixes or crash fixes nust
appear on this list before they can be install ed. -

Al | user changes nust appear on this list.

Debuggi n

Debugging of a nodification is the responsibility of the programmer. It
is expected that the Project Leader will ensure adequate testing has been
done on the final version of a nodification. The code review process is
not intended to find bugs in the code or errors in the design.

Copyright, 1984, Mchigan State University Board of Trustees

Install ation procedures - STRAP #3.5
Page 2

5.0 The dft Certificate

6.0

After the nodifications have been debugged to the best of t he
programrer's ability a "Aft Certificate" (or "Gft") will be filled out.
As the formw |l reveal, its functions are nany:

1. System Integration—+the Systens Integrator will have a hard
copy of all of the changes that are being nade to the system

2. Dependence—gi ves an indication of what other routines nust be
changed in order for this nodification to work.

3. ldentification—=ahat the nodification is called, who wote it,
where the source of the nodification is, what the nodification
does.

4. Routing Information—who the nodification goes to next (and a
record of where it has been).
/

, 7
phy e Ay go JhroTl st o

Code Revi ew
The Gft Certificate along with a machine highlighted (UPICed) source
listing is sent to several reviewers described below Al Gfts go thru
this reviewpath regardl ess of the status of the coder.
6+1 Design group review
The A ft is first sent to a "design group"” reviewer. This should be
anot her programrer famliar with the project or area being nodified.
If the Gft is work done on a nulti-person project, then the first
revi ener should be a menber of that project group.

The design reviewer wll thoroughly review the code for adherence to
the foll ow ng:

1. Al subroutines and nodules have conplete initial
comment s.

2. Al code has sufficient (but not excessive) coments.
3. The code is nodular and not convol ut ed.

4. The code follows the published docunentation (SW and
desi gn docunent s) .

5. Conplete testing has been done with adequate testing
under the latest system

Installation procedures - STRAP #3.5
Page 3

6. The nodification follows requirenents for publishing an
SWP and being on the Monday |ist.

7. The product is well designed from a maintenance,
reliability, and nodifiability viewpoint.

8. The nodification follows the STRAP 9 specifications.

9. The nodification was adequately tested under the |atest
producti on system

10. The nodification does not unnecessarily require
abnor nal , tricky, or conpl i cat ed installation
pr ocedur es. If this installation proceedure seens
abnormal , systens integration nust approve the process.

11. The nodification fulfills any other requirenents the
project |eader w shes to inpose.

6.2 Project |eader review

6.3

If the gift is marked "ACC' (accepted if comrents corrected), it is

then sent to the coder's project leader. |If the project |eader is
not avail able or was the design reviewer, another project |eader nay
be used. The project |eader checks for the same things as the

design reviewer; however, since any maor problens should have
already been corrected, this review should concentrate on the
overal |l nodification and not the details.
Systens manager review
Wien the nodification fulfills the above two checks it is given to
the systens supervisor. The systens supervisor checks for the
fol | ow ng

1. The LSDdata will result in a good quality docunent.

2. The nodification was done in proper priority and followed the
constraints inposed.

3. Wether any other changes should be included in this
nodi fi cati on.

4. The nodification satisfies any external considerations.
5. Spot checks the other reviewer's work.
(It is, of course, best to insure that itens 2, 3, and 4 are

fulfilled before the nodification is presented for approval —this
shoul d be done by the project |eader).

Installation procedures - STRAP #3.5

Page 4

6.4

6.5

System Integration

Systens integration only reviews whether the LSD data will result in
a good docurent and whether the Gft indicates that it should be
i nstall ed.

Code review routing and probl em not ati on.

If the proposed nodification fails to meet any of the review
criteria, the reviewer should explain the problens on the |isting.
If it is a specific problemin relation to a given set of code, the
explaination should be witten beside the probl emcode; a general,
overall problemmay either be noted at the beginning of the 1listing
or at the first incidence. 1In any case, if the coder knows of a
simlar problemit should also be corrected even if it has not been
found by the reviewer! .

A problem may be considered “"fatal" or “"infornative" by the
revi ewer. An infornative problem is one that does not require
correction before the code is installed, but should be noted by the
coder so that future nodifications will be correct. Fatal problens
nust be resolved before the code is installed. A reviewer further
along the review chain nay upgrade an infornative problemto fatal;
downgr adi ng shoul d not be done without discussion and agreenment of
the previous reviewer. Usually, the ink color will indicate whether
the reviewer's conment is fatal or informative. Qurrent tradition
has orange, red, and purple being reserved for fatal conmments;
green, black, and brown indicate informative comments.

If the fatal problens are mnor and can be corrected by fairly
sinple changes, the reviewer should mark the ACC box on the gift
certificate and route the gift to the next reviewer. Qherw se, the
gift should be returned to the coder. :

If significant problens are found at a level beyond the design
reviewer, the gift should be routed back thru the design reviewer.
This will help these reviewers to inprove their skills.

If the coder disagrees with a reviewer's comment, the coder is
encouraged to discuss the situation with the reviewer. D scussion
i s encouraged because this will allow both people to inprove their
skills. If no resolution is achieved, an appeal nmay be made to the
syst ens nanager .

7.0

Installation procedures - STRAP #3.5
Page 5

6.6 Installation

Wien the nodification is fully approved, the Systens Integrator
(S1.) will hold the nodification wuntil all Installation
dependenci es (other nodifications needed, Mdnday list timng, Mjor
System needed) have been net. |If there are extensive dependenci es
or a large nunber of nodifications that have to wait several weeks,
the S.I. may send the partial package back to the project |eader.
Wien the P.L. deternines that all the Gfts are ready, the entire
package is sent directly to the S. 1.

After installation the Gft, marked as installed, along wth the
listing, wll be returned to the Project Leader. The programrer
shoul d note any comments on the listing for future reference.

6.7 Exceptional problens
Qccasionally, a nodification nay get lost in this routing process.

The submtter is encouraged to follow up on any change that is not
heard fromfor over one week.

The Modificati on Deck

Modi fi cation decks will be 'usable' by UPDATE. 1In addition, each |DENT
will have the following five features to nmake installation and
document ati on as easy as possi bl e.

1. The first line of the nodification deck is an *I DENT card. The
*IDENT line is of the follow ng fornmat:

*| DENT i dnane PLnane

The PLnane is the nane of the UPDATE PROERAM LIBRARY this
nodi fication affects. The PLnane nust start in or before colum
73. *I DENT can be abbrevi at ed.

NOTE: The optional UPDATE paraneters B=, K= and U= may not be used
wi t hout the approval of the Systens Integrator.

Al *PIRE and *PURDECK lines must also contain the PlLnane
starting in or before colum 73.

""GOMAILE lines nmay al so use the PLnane if the decks mentioned are
not on the same PL as that appearing on the *IDENT line. This
allows reassenbly of routines on different PLs in order to nake
use of changes to texts or the -COVDECK PL.

2. *DECK lines should al ways have the identifier "name.l" in the deck
"nane. " Wien an identifier is also a deck name, lines fromthat
i dent should only appear in that file.

Installation procedures - STRAP #3.5

Page 6

To facilitate LSD witing and docunentation, UPDATE comrent |ines
are added to the nodification file. The initial deadstart,
operational and user changes sections are 'stand al one' and shoul d
be neat and consistent with the renainder of the LSD. Al of the
comments of each type are gathered from each ident and then
printed in the appropriate LSD section with other comments of the
sane type. The format of the comrent line is:

7
14 6 2
*/ X ccr c
Wiere Cis the cooment and X is the type of conmment. Note that

there is a blank between the X and the C—+his is required. Al so,
all comrents that are not of a required fornat nust be conplete
good English sentences. Jargon and abbreviations should be
avoi ded.

Comments of type 'D, 'G, "0, 'U should be in "upper/lower"
format.

Bel ow are the different val ues of X

D - Description of the nodification—+this is the part that goes
in the section of the LSD under | DENTIFIERS. It nust
describe to a reasonably know edgeabl e person (someone who
has taken the Systens student training program all changes
that were made. This nust describe the changes; sinply
saying something like "Install nodification to allow CYBER
Loader to run on our systemi is not acceptable. The first

"*/" lines in any ident nust be "*/ D' lines; however, it
is not necessary to place all "*/ D' lines at the beginning
of the ident.

E- EDTLIB lines in the following format; beginning in colum
6 the EDITLIB Library Nane affected (ex: NUCLEUS, PPLIB or
SYSOWL) followed by a slash (/) and then the EDTLIB
command. There should be no blanks next to the slash.
These should be wused to DELETE binaries on the deadstart
tape that one no |onger needs.

Exanpl e:

If routine Ais to be noved from the NUCLEUS
library to the FCRTRAN library, along with the
necessary nodification to PRE, the source for
the gift should contain a *COMWILE Iline to
reassenble A and the following '*/ E line.

*/ E NUCLEUS/ DELETE(A)

Installati on procedures - STRAP #3.5
Page 7

F - Dayfile messages in the following format; beginning in

S -

Colum 6 of the first cooment |ine should be the dayfile
nmessage exactly as it will be in the dayfile. Golum 10 or
after of subsequent |ines should be a further clarification
of the nessage (but the nessage should be perfectly clear
in itself). This clarification should be in "upper/|ower"
fornat .
Exanpl e:
1
6 O
*/ F PRE - | NVALI D CHARACTERS
*I F O COURS WEN NON ALPHANUVERI C
CHARACTERS
*I F \OOCLR I N A PARAMETER

General comments—this is the part that goes in the section
of the LSD under GENERAL. -These are normally inserted by
the Systens Integrator, and are used to indicate the najor
changes or "Mnday list" itens which appear in the system

General comments should be kept short and of general
interest to nmost know edgeabl e users.

Level nunber changes. W enever a dependent product PL is
updated to a new PSR level nunber, a '*/ L' line nust be
i ncl uded. The level nunber should be in colum 6 and the
PLname in colum 10. Exanple:

*/ L 420 FTN

Qperational changes—this section nust describe all changes
that will affect the Qperator, such as:

- changes to DSD visible to the operator when the
keyboard is in LOXed node (new or changed
commands or di spl ays).

- newor differéent nessages that the operator
nust respond to.

- newor different procedures for initializing
attached mni conputers.

- how to wuse progranms that work only (or
differently) from the console (or operator's
termnal).

STIRs fixed by this nodification. The fornat is one STIR
nunber per |ine beginning in colum 6.

Installation procedures - STRAP #3.5

Page 8

3.

Exanpl e:

*| S 7628
*/ S 8219

The type D lines should also contain the sentence
"This fixes STIRs 7628 and 8219".

U - Wser changes—this section nust describe all user visible
changes. It should be conpl ete enough that a know edgeabl e
user (such as a consultant) would recogni ze and understand
t he change once seen.

bl ank - UPDATE comment lines with blanks in colums 3 and 4 nay
be used freely within an ident (following the initial "*/
D' lines). These lines will be saved on the Correction
Deck Library, but are otherw se ignored. '

A correction history section should be included in each
nodi fication. The format for these commrents:

col. 13 6
* author - date
* comment s describing the nodification

The date should be mmMdd/yy. Two digits are preferred (05/08/73).
The correction history section does not occur in all routines.
Any nodi fications made to routines that do not have the correction
hi story should al so add this section..

New routines may al so include this section at the coder's option.
The format for the correction history section:

2
col. 1 0
*| DENT CHhnnnnn PLname
*/ D START CQORRECTI ON H STCRY FCR ' nnnnnnn' .
*| nnnnn. XX

** CH QCRRECTI ON H STCORY:

" .

*

** CE* END OF OCORRECTI ON H STCRY
*C nnnnnnn

These lines should have the ident "CHhnnnn" where "nnnnn" is the
deck name of the routine. Al correction history comrents wll be
inserted by the line "*I CHinnnn.2" (This wll give the nost
recent modification first.)

Wien starting a correction history, try to keep it on the first
couple of pages of the listing. Special warnings such as BASE
changes or non-standard column conventions should imrediately

Instal | ation procedures - STRAP #3.5
Page 9

precede the correction history so they will be visible in a UPIC
l'isting.

Wen nodi fying the texts, a correction history is also included.
The insert point is *I CHSYMBOLS.2 if you are addi ng new synbol s.
*I CHVACROS. 2 is the point when the macro changes are nade. By
compiling the deck TEXTCH (*QOWPILE TEXTCH or *COWPI LE =TEXTCH).
The correction history may be seen.

4. The last line(s) of each modification is the appropriate *COWILE
l'ine(s).

5. Use of the following UPDATE directives is prohibited (wthout
approval of the Systens Integrator):

ADDF| LE END F READ
CHANGE ENDTEXT SELPURGE

DECLARE IF SELYANK
DEFI NE MOVE SEQUENCE
DO NOABBREV ~ TEXT
DONT NOLI ST

8.0 Installation

There are three 'levels' of installation.

1. Crash Fix—a nmodification may be installed in the mddle of the
week if it fixes the cause of systemcrashes or a very major bug.
The nodification must be wal ked through the approval process by the
Project Leader or the coder.

2. \Wekend systems—general bug fixes and inprovenents are installed
in a systemthat is wused for Saturday and Sunday production.
Mdifications for this system nust reach the Systens Integrator
fully approved by Tuesday 16: 00.

3. Major systenms—non-upward-conpatibl e user visible changes (such as
a new version of a conpiler that won't accept all source statenents
the old version woul d) are saved for major systens i.e. LSD XX 00.

In all cases the Systens Integrator will nmake up the appropriate PL
tapes after the deadstart tape is created. Systems integration
will also maintain permanent file copies of certain current PLs.
There is a transition period between systens in which we nay not be
sure which systemis on the permanent file. As a general rule, the
PFs will match the systemthat is currently fully operational.

WRI TTEN BY Mark R Ri ordan

APPROVED BY Ri chard R More

M chigan State University
Conput er Labor at ory
Systenis Tasks, Responsibilities and Procedures
Nunber 4.1
Witing 6000 SCCPE Menos

i March 28, 1977

A '6000 SCCPE Meno (6SM) or an M (see STRAP 11) is witten for each
system alteration. The 6SM should usually cover a project. However,
when there exists a 6SM on sone section of the project, then the
existing 6SM should be brought up-to-date and the project 6SM shoul d
reference the existing 6SM For exanple: the installation of the CYBER
Loader nodified nmany routines one of which was PRE. The 6SM for the
CYBER Loader project should sinply refer the reader to the PRE 6SM
The PRE 6SM woul d be brought up-to-date.

A 6SMis brought up-to-date by either an M appeﬁdi X, a 6SM appendi X,

or by republishing the 6SMwith revision nunber increnented by one. |If
the changes are extensive, a revised 6SMis preferred. If the 6SMis
available in nachine readable easy to update form it should be
revi sed. The revision can consist of change pages so that the entire
6SM does not have to be republished. Each 6SMis nunbered by the
Techni cal Assistant. The nunber has the form"n.r". "n" is the nunber

of the 6SMin the sequence of all 6SMs; "r" is the revision nunber for
this specific 6SM

The 6SM serves rmany pur poses. It provides a conplete internal and

external description; it gives the reason for the nodification; it
tells where to go to get further information. The 6SM can be used by
the person witing user docunentation; it can be used by the person
| earni ng about how this nodification was done; it can be used to |earn
about the considerations that went- into the creation of the
nmodification. It can be used to describe to other installations what

we did and howwe did it so that they can judge whether they night
attenpt to install the nodification.

However , the 6SM is not to replace or duplicate the incode
docunent at i on.

The 6SM for any |ow priority projects nust be published before the code
is installed. The 6SMs for high priority projects nmust be published
within 4 weeks of installation. The 6SMis witten by the coder (or
coders) and is approved by the Project Leader that reviewed the code.
The systens supervisor then reviews the 6SM before it is published.

STRAP 4.1
Page 2

The 6SM shoul d have a heading that identifies the 6SM the nunber, the
title, the date witten, and MBU Conputer Laboratory. The bottom of
the first page should have this copyright notice: "OOPYRGHI year,
M CH GAN STATE UNl VERSI TY, BOARD CF TRUSTEES." (The "year" is the year
the 6SMis published.)

This section format must be followed when witing 6SMs. This hel ps
insure’ that all inportant points are covered. ’

1.0 1 NTRCDUCTI ON

This section should briefly describe the purpose and justification
of the nodification.

2.0 EXTERNAL REFERENCE SPEC Fl CAT| ONS

This section should describe the external characteristics of the
nmodification. |If the change is strictly "internal", there should
still be sone external features. For exanple: "This nodification
wll elimnate all channel hangs" or "It is possible to turn off
the device and still acconplish the XYZ task by using the old ABC
devi ce. "

If there are user effects, a manual change could be witten from
this section

If this nodification is a newuser callable routine, this section
is a conplete description of how the user can use this routine.

If this is an extensive nodification of an existing routine
(usually supplied by an outside source) then it may be best to
conpl etely describe the external specifications.

3-0 _SYSTEM PROGRAMM NG CONSI DERATI ONS

This section will mention the specific routines nodified or added
and the LSD under which it was installed. Any assenbly options,
ot her changes required, and general cautions shoul d be descri bed
here. |If general tables such as the control point area have been
altered slightly, it should be noted here along with a picture of
the new part of the table (at |east one word) and what nodul es use
this altered information.

4.0 | NTERNAL REFERENCE SPEC FI CATI ONS

This section describes what internal changes were made. However,
it nust not be too detailed (nost early 6SMs suffer from bei ng
too detailed). To use the forest and tree anal ogy: you shoul d
describe the various neadows and groves you mght find, certainly
warn where the dangerous bears lurk, possibly tell about a very
notable tree. But, you shoul d not describe each tree and bush,

STRAP 4.1
Page 3

nor should you tell about the bark and |eaves. A nore concrete
exanpl e can be found in 6SM 99. However, that does not conpletely
follow the outline bel ow

The data structures used should be described in -pictures
(preferably plotted) and what routines use or nodify which fields
shoul d be told.

Organi zation of this section (assuming a major modification):

"First, a very general overall flow (again with pictures and
exanpl es) is given. Second shoul d be the pictures of the tables
with references to the descriptions of the nodul es that use these
tables. Third, if necessary, a table of contents for this section
whi ch gives the section nunbers of the descriptions of the various
nodul es Finally, the overall flowis broken down into the nodul es
created when you did the top down design. Wsually only the first
three (possibly four) levels need to be described. Frequently, a
bl ock nodul e picture will be useful.

The purpose of this section is to allow one to becone famliar
with the "forest” to the extent that a snmall local alteration can
be made knowing only the imediate vicinity in detail.

5.0 CPERATAR OQOVMUN CATI ONS_AND PROCEDURES

This section should describe how this nodification alters the way

operati ons does things. It describes any new messages and
displays. It tells what actions are requested of the operations
staff.

6.0 USER _ASPECTS

Wiat benefit will the users see with this nodification? This
section should explain why the users should feel this change has
helped them It should also summarize and describe alterations
that will be found by the user.

7.0 SYSTEM FI LE CHANGES

This section will describe any additions or changes to the various
systemfiles such as the dayfile or the CE error file.

8.0 REFERENCES

This section should refer the reader to any associated 6SMs. It
should also give the software nodification proposal nunber. Both
titles and nunbers should be given when possi bl e. If this 6SM
will refer to ayet to be witten 6SM it is possible to reserve
6SM nunbers ahead of tine, but you do coomit to witing that 6SM

VWR TTEN BY: Mﬂ%h

R chard R More

M chigan State University
Conput er- Labor at ory
System s Tasks, Responsibilities and Procedures
Nunber 5.2
Mai nt enance of Systens' Tape Library

June 5, 1984

1.0 Description.

The Systens group tape library consists of all tapes with a prefix of
"IM" Frequently used tapes are kept in the machine room in racks
separate fromuser tapes. Less frequently used tapes are stored in Room
301. They are arranged by nunber; each tape has a unique position in the
racks.

Alist of tapes is kept by the technical assistant (T.A). The [ist
contains the VRN (visual reel nunber), owner, use, date tape was
assigned, length, location, and density for each tape. Two full lists
are posted: one on the Systens' bulletin board i n Room 301, and one on
the Systens' tape racks in the nmachine room A separate list of
avail abl e tapes is posted on the bulletin board. These lists are updated
weekl y.

2.0 Procedures for Library Users.

2.1 Each tape in use has a sticker of the form

Usage

Owner Date

A M Mtape without such a sticker is available for use.

Copyright, 1984, Mchigan State University Board of Trustees

Mai nt enance of Systems' Tape Library - STRAP #5.2
Page 2

2.2 A person needing a tape can take any tape without a |abel as
descri bed above. The available tape list on the Systems' bulletin
board should be consulted to verify that the tape is available. A
person taking a tape must cross the tape name off the available
list, and put a sticker (as described in section 2.1) on the tape.
They should also send a note to the T.A saying that they have
acquired the tape. The note should include their nane, the tape
VRN, its new use, and tape location or density if either wll be
changed.

2.3 A person releasing a tape shoul d:

1) blank label the tape (ensure PN=000000)

2) renove the paper | abel

3) notify the TA that it is free (send a note)

4) hang the tape on the tape racks where the other AVAI LABLE- FREE

tapes are.

2.4 Every nonth every person holding tapes will receive a copy of the
list of tapes he holds. [f the ower wants to update the
information on the list (or return a tape to AVAILABLE), they shoul d
mark each correction on the list and return it to the T.A, or just
send a note.

3.0 Procedures for the Technical Assistant.

A. The technical assistant will maintain a list of the contents of all
the Systens group's tapes, update the list weekly, and distribute
to each person holding tapes a list of the tapes they hold nonthly.

A weekly available tape list wll be posted on the Systens'
bul letin board. Three weekly full lists are sent to the Systens
Supervisor, the Systems' bulletin board, and the machine room tape
rack.

B. Current procedures for maintaining the listing are as follows:

A Query Update procedure is in use that generates naster lists and
i ndividual lists.

1) The tape list and QU procedures are maintained on the
permanent file TAPEASSIGN. This file is an Editor work file.

Information kept on each tape is VRN, user nane, |abe
description (use), date created, length, location, and
density in that order. Tab stops are set up at all fields
except VRN and NAME to facilitate updating information.

Mai nt enance of Systens' Tape Library - STRAP #5.2
Page 3

By convention, a tape with a VRN of VIMiuu is described on
the workfile line luuu. For exanple, VIM47 is described on
line 1247.

2) The full set of listings can be obtained by attaching the
permanent file as EWI LE and saying GO, "MONTH'.

3) The weekly set of listings can be obtained by attaching the
file and typing GO "WEEK".

Avai l abl e tapes are assigned to AVAILABLE, use description
FREE. Special tapes are assigned to MOORE-ARS (for archive
storage).

C. Each week the T.A wll examne a portion of all the tapes and
update the list as needed to reflect the contents of the labels on
the tapes.

D. Wen the T.A receives a note to make a tape available free, the
T.A should insure that:

1) The paper "stickunt |abel has been renoved.

2) The tape has been blank |abeled, i.e., the PNin the |abel is
000000.

3) The tape has been placed with the other AVAI LABLE- FREE t apes.

If any of the above have not been done, the T. A should do them
after first ensuring that the tape really was owned by the person
making the request. This is done by checking the stickum [abel
the PN on the tape |abel, and the tape assignnent |ist.

Finally, the entry for the tape in the file TAPEASSI GN should be

changed to have an assignee of the AVAILABLE, and use description
of FREE.

VRl TTEN BY: denJ. Kne

APPROVED BY: _Richard R More

Mchigan State University
Conput er Laborat ory
System s Tasks, Responsibilities and Procedures
Nunber 6.2
The Software Mdifcation Proposal Docurent

June 8, 1984

A proposal must be witten for any additional user software product or user
vi si bl e change of any product. Al so, a najor nodification of any product that
is not user visible is proposed in witing. This proposal is then circulated
for additional comrent and viewpoints. This way all factors can be consi dered
and nodifications are not made in a vacuum

Pr ocedur e

The Software Modification Proposal (SWP) is witten following the fornat
outlined bel ow. The SWP is then approved by the project |eader; infornal
review is al so done by the system programmi ng supervi sor. Then the systens
programmng supervisor assigns the SW nunber and attaches and fills in a
cover sheet for reviewers' comrents. The reviewers are expected to return the
cover sheet by the final date for comments.

If the reviewers' comments indicate that a meeting to explain things further
or to resolve some differences is necessary, a neeting of the reviewers wll
be held. Qherwise a reply to these cooments will be witten by the witer of
the SMWP.

Approval , D sapproval

Approval , or disapproval of the proposed nodificationis given, inwiting, by
the Drector of the Conputer Laboratory or their designee.

Approval does not nean approval to work on the nodification. It sinply means
the proposal is deemed to be reasonable and is approved. Wrk on the
nodi fi cation nust only be done when it receives high priority or when it is
contained within some other high priority work and adds no nore than 5%
i npl enentation time onto that work.

D sapproval of the proposed nodification means that the nodification is not

acceptable inits present form If the proposal is not to be rewitten, then
it shoul d be dropped.

Copyright, 1984, Mchigan State University Board of Trustees

Witing SMP s - STRAP #6. 2
Page 2

For nat

The following format should be foll owed when a Software Modification Proposal
is witten. The sub-paragraphs shoul d be nunber ed.

1.0

2.0

3.0

4.0

| ntroducti on

This shoul d give an overvi ew of the nodification.

Present Condition

Describe the present state of affairs wth which the proposal is
concerned. This should show why the nodification is needed.

Proposed Mbdificati on

Descri be how the proposed nodification will change the current system
How this wll help the problens nentioned earlier should be noted. A
preci se description of the user interface nust be included. In nost
cases, exanples and error diagnostics should al so be given.

| npl enentation Details

4.1 The nodifications to specific routines and any new routines
necessary should be briefly descri bed.

4.2 Estimate the amount of tine to inplement the change and the armount
of time before the full change is available for use. For exanple: 7
wor k-weeks of time—the change will be available 10 weeks from start
of work; four full-time weeks, six half-tinme weeks.

Al so give the dedicated and production conputer resources.

4.3 Describe any special procedures that will be necesssary for testing
pur poses.

4.4 Describe any additional, special effort required by other groups.
Specifically, the docunentation time for Technical GCommunications
nust be incl uded.

A rough draft of the SMP is given to the Technical Commnications
section with a well defined user interface. They will return a
detailed work time estimate as well as a list of the nanuals that
need to be changed. This should be included in this section.

Witing SMP s - STRAP #6. 2

Page 3

5.0 The Effect of this Change

5.1 On the user

5.2 (n operations

5.3 n the accounting system

54 On the systemfiles (dayfile, CE error file, etc.)
6.0 Sunmary

This should sunmarize and notivate the proposed change. It should give

the benefits and costs of the nodification.

The SMP wusually serves as the prelininary user docunmentation for user
servi ces. Any change in this docunentation nust be preceded with a nmeno to
all reviewers describing the change.

The permanent file SMPSKELETON contains an Editor workfile with an R\F
skeleton for an SMP. You should use FOOPY on this workfile and then fill in
your copy as needed.

VR TTEN BY: Ri chard R Mbore

M chigan State University
Conput er Laboratory
System's Tasks, Responsibilities and Procedures
Nunber 7.4
Monthly Report Content and Style

June 7, 1984

Everyone in the systens group wites a report at the end of each nonth
describing all the work they have done during that nonth and the work they
expect to acconplish next month. These reports are witten using R\F in a
manner described bel ow They are to be conpleted and given to your project
leader or (if you have no project |leader) the Systens manager by the end of
the second working day of each month. The report should cover all activities
of the previous nonth.

The report is conpleted when a rough draft has been approved by the project
| eader or nanager.

These individual reports are nmerged into a final Systens Programmng Mnthly
Report by the manager of systens devel oprent. This final report is
distributed to other areas within the Conputer Laboratory and to the Conputer
perations and Finance committee. This report nust be published by the 10th
wor ki ng day of the nonth.

Al reports nust use good English sentences. The reports may be edited if
they are considered inappropriate for general distribution.

Descriptions may depend upon previous nonths' reports (wth proper citation),
but they should be as free of jargon as possible. They nust not be a repeat
of the previous nonths' report.

1.0 Preparation using R\F

The permanent file "MINTH.YREPCORTSKELETON' should be copied (using FOOPY
on HAL) to your local editor workfile. This file contains |ines that
wi |l show you where to place the sections of your report. You should
never delete ANY lines that were in the skel eton.

After you have finished witing the report, run it thru R\ and send this
rough draft to your project |eader or the Systens nanager.

Wien the rough draft is approved, and not before then, the source from

the ewfile (lines 100000-*|) should be saved and catal oged with the name
"tiiMN". "iii" represents your initials and "nn" is the nonth nunber

Copyright, 1984, Mchigan State University Board of Trustees

Monthly Report Witing - STRAP #7.4

Page 2
(with a leading zero if necessary). |If, for some reason, you did not use
the current "MNTHLYREPCRTSKELETON' perrmanent file, then you shoul d save
the source for only those lines you entered - none of the skeleton |Iines

2.0

shoul d be saved.

For exanple: when the rough draft of the August nonthly report was
approved, the comrands:

SAVE, MR08, SO 100000- *L.

PUT, MRO8.
woul d be done. NOTE: the line range MJST be 100000-*L, and the SOURCE
nust be saved. Do NOT save with the line range described by the string
with your initials.

Wien the nonthly report is published, then you shoul d purge the pernmanent
file you created.

Monthly report format and style:

The nonthly report contains six sections. It is inportant that you
follow precisely the style outlined so that the final report is a unit.

2.1 Witten review and plan for next month section

In this section the programmer briefly describes how well the
expected acconplishrments were met during the nmonth and specific
projections of work during the next nonth. The reason for any

devi ation fromprojected goals should be noted here.

This section begins on |line nunber 100000 in the nonthly report
skel eton workfile. The place where you shoul d add your part is just
after the line that contains ".rpiii" (iii is your initials).

There should be at |east two paragraphs witten. The first will
describe what you acconplished this nonth, contrasting the
acconpl i shments with the expectations nentioned the previous nonth.
The second paragraph will contain the specific projections for next
nont h.

2.1.1 Style:

rp i

This nonth fixes for STIR S 1125, 3943, and 4047 were
installed as predicted. However, the PF RENAME feature
was not conpleted because nachine time was usurped by
high priority projects. The time was spent analyzing
STIR S 4048 and 5143 i nstead.

Next nonth the RENAME project should be installed as
wel | as fixes for STIRS 4048, 5143 and 5021.
Investigation wll begin on the ten high priority
SELDUMP stirs.

Monthly Report Witing - STRAP #7.4
Page 3

2.2 Project summary

This section describes, by project, the work done on that project.
It should also include, in a separate paragraph, a review and
projection for the project for major projects.

If you are describing a nodule of a large project which you have
worked on wth other people, then you wll be describing a
subproject. In this case, the global description for the project
would be witten by the teamand included in one nmenber's report.
This gl obal description would contain the review and projection.
The Systens nanager will edit the pieces into a whol e report.

This section begins on line nunber 200000 in the nonthly report
skel et on. The place to add your report is indicated by a ".rent
line with your initials. Refer to the R\ macros section for an
explanation of the ".proj" and the ".subproj" nacros.

2.2.1 Style for a sinple project:

.proj (project title)
i

[description of work done, probl ens encountered,
sol utions to probl ens, techniques di scovered, etc.]

[review and plan for next nonth]

2.2.2 Style for a large project with separate nodul es worked on by
several peopl e:

.proj Project title
[possibly a general description]

Revi ew and plan for next nonth

[review of previous nonths goal s and acconpli shnent of
them Realistic expectations for next nonth.]

. subproj Sub-nodul e 1
Jiid
[description as in sinple projects]

. subproj Sub-nodul e 2
jil

[description]

Monthly Report Witing - STRAP #7.4

Page 4

2.3 Maintenance summary

2.4

This section describes, by project or item the work done on
maintaining the current system This includes STIR fixes, system
creation, products assigned a maintenance status, etc.

This section begins on |ine nunber 300000 in the nonthly report
skel et on. The place to add your report is indicated by a ".renf
line with your initials. Refer to the RNF nacros section for an
expl anation of the ".proj" and the ".subproj" nacros.

2.3.1 Style:

.PRQ} System Generation
i
[description of system generation work]

.stir 4135 - Incorrect buffer paraneter error
Jdi.er

[description of work done to fix this STIR]

Wrk summary

This is a sunmary, by individual, of the projects assigned to that
person, the work done, the priority, and the percent of effort spent
on each project.

This section begins on line number 400000 in the nmonthly report
skel et on. The place to add your report is indicated by a ".worksum
1" line. Refer to the R\F macros section for an explanation of
the ".worksun nacro. :

2.4.1 Style:
.worksum i
project 1 .t 4 Wort WH .rt 75 Lcr
project 2 .t - .t C.rt H.rt 20 .cr
project 3 .t - rt GG .rt 5 .cr
project 4 .t AN rt Mort 0 Lcr

These tabs position the devel opment plan item nunber, the
work done, the priority, and the percent of FTE spent on the
specified project. If you set the tabs in SCREDIT to
54,63,69,76, and 80, the "dup-tab" SCREDIT feature will be
effective and the final ".cr" can be omtted (the first *' .t"
woul d begin in colum 55).

Monthly Report Witing - STRAP #7.4
Page 5

2.4.2 \Wrk summary col ums

2.4.2.1

2.4.2.2

2.4.2.3

2.4.2.4

Devel opnent pl an item nunber:

Since the devel opnent plan item nunbers have not
been assigned recently, the first tab position has
sinply a dash unless the itemnunber is known.

Wor k done col um

The all owabl e codes in the "Wrk Done" field (the
codes nust be capitalized):
W- worked on
C- conpleted (a project is conpleted only after
all docunentation is done)
N - no work done
- - adash is be used for ongoi ng work

A project nust remain on the list wuntil it is
conpl et ed.

Priority assignment col umn:
The al |l owabl e codes in the "Priority" field:

VH H M L, VL, GG
where H M L are high, nediumand |ow and the V
neans very. OG neans an On- Qi ng proj ect .

Percent of work col um:

The "Percent of Wrk" colum gives the percent of a
full time effort spent on that project during the
nonth. |f a half tine person is reporting half tinme
work for the entire nonth, then the total of the
percent worked col um shoul d be 50. The accuracy,
if such records are kept, can be to one digit to the
right of the decimal point (i.e., 75.2 percent).

Peopl e should npot include unpaid itens such as
studyi ng for exams, etc. However, paid holidays and
vacat i ons shoul d be i ncl uded.

Monthly Report Witing - STRAP #7.4

Page 6

For exanpl e: assume that there are 22 weekdays in
the nmonth. [If you worked for 10 days conpletely on
project A 11 full days on project B, and 1 day was
a holiday, your percent of work would be cal cul at ed

by:
project A 10 x 8 = 45%
22 x 8
project B 11 x 8 = 50%
22 x 8
Hol i day 1 x 8 = 5%
22 x 8

If, however, you worked that holiday (on Project O
then you would add to the above sutmary a line for
project C

8 = 5%

project C 1 X
22 x 8
Therefore your percentage would total to nore than
100% Since the work done colum represents the
percent age based on a full tinme equival ent, whenever
you work nore than an FTE, the percentage will total
nore than 100%

If during the next nonth (21 days) you worked 12
days on C, 8 days on A and took one day off for
conp tine, then your work summary woul d be:

project C 12 x 8 = 57%
21 x 8
project A 8x8 = 38%

You do not show the conp tine; it is inplied by the
fact that the total does not equal 100%

2.5 Docunents published

This is a list of documents published by you during the nonth
report ed. It should include the series identification (SMP, SMD,
etc.,), thetitles, and the date published. The document nust have

been published; reports still being typed or printed should not be
nment i oned.

This section begins on line nunber 500000 in the nonthly report
skel et on. The place to add your report is indicated by a ".ren
line with your initials.

Monthly Report Witing - STRAP #7.4

Page 7
2.5.1 Style:
SW 137.1 project 1 title 3/ 24/ 83
SMD 167. 6SM title 3/ 15/ 83
User Notice 3 title 3/ 28/ 83
m sc. report maxi m zi ng thruput 3/ 17/ 83
The actual positioning is not relevant; this section will be

edited by the Systens manager.
2.6 M scell aneous

This section contains any m scel |l aneous conments, general probl ens,
acconpl i shnment's, etc.

This section begins on line nunber 600000 in the nmonthly report
skel et on. The place to add your report is indicated by a ".renm
line with your initials.

2.7 Special reports:

The peopl e responsi bl e for crash analysis on the various conputers
nust include summaries of systemreliability (which gives crashes
incurred, fixed, etc.) and a list of all crashes for the nonth.
These reports wll be included in the maintenance section. The
actual style is particular to the conputer system

The person responsible for STIR s nust include an accurate summary
of the STIR activity during the nonth.

3.0 RN\F Macro's

Names: Macros for each person's name are defined as ".iii" where iii is
the person's initials. These should only be used with the ".PRQJ",
". SUBPRQAJ", and ".STIR' macr os.

Projects: Each major project should begin with the macro ".PRQJ". The
renmainder of the line will be taken as the project title. |If you want
your nane to be part of the title, place ".iii" on the NEXT |ine;

ot herwise, put a blank line following this title |ine.

Subprojects: Mdules within a major project should begin with the macro
".SUBPRQJ". The rermainder of the line will be taken as the title for the
subproject. |f you want you name to be part of the title, place ".iii"
on the NEXT line; otherwise, put a blank line following this title Iine.

STIR s: Each STIR should begin with the macro ".STIR' followed by the
STIR nunber and then the title. The renainder of the line will be taken
as the STIRtitle. The following line nust contain the macro ".iii".

Monthly Report Witing - STRAP #7.4
Page 8

Wrrk summary: The skeleton contains the ".WRKSUM .iii" macros for each
person in the systens group. This nmacro will set up the tab stops for
the various colums of data. You should use right tab (".rt") comrands
for the priority and percentage work colums. Each summary |ine shoul d
end with ".br", ".cr", or end in colum 80.

Review and Pl an: The skeleton contains the ".RP .iii" macros for each
person in the systens group. This establishes where each person shoul d
pl ace their review and pl an comrents.

G hers: The nmacros described in the "R\ Micros" nenorandum are also
avai | abl e.

If these guidelines are followed, the final report will be easy for people
outside of the systens group to read. The nonthly report is the main vehicle
to tell others about our work to facilitate their wusage of the conputer
systens. It is inportant that this report be clear and conci se.

VWR TTEN BY: Ri chard R Mbore

M chigan State University
Conput er Labor at ory
Systenis Tasks, Responsibilities and Procedures
Nunber 9.4
Quidelines for Coding Practices and Conventions

June 8, 1984

The charter of the Mchigan State Unhiversity Conputer Laboratory Systens G oup
is to best support the system software needs of the Lab. This means the
devel oprment and mai nt enance of large anounts of code with high reliability and
nodi fiability.

The nmost inportant criteria to be considered when designing and coding then
fol | ow

1. Hgh reliability. Programunits must work accurately, according to the
designed external specification, wth no harnful side effects. This
i ncl udes both ensuring that the overall stability of the system is not
decreased by a nodification (i.e., don't cause crashes!) and ensuring
that existing, working prograns are not broken by any changes.

2. Mdifiability. Programunits are continually being changed, to fix bugs
and to add new features. A routine which cannot be easily nodified is a
liability to our system

3. UWsefulness. To be worthy of the time in programming (and in later
nmai nt enance), a routine should provide a significant benefit (directly
or indirectly) to the user community. Since we are in business to
provide conputing service to the University users, our time nust be
spent on projects which nost benefit the user, even if those projects
are not necessarily the nost exciting or fun to code.

4. Ease of use. Any new feature available to the wuser should be sinply
descri bed—al ways rough out the user documentation during the design.
Dfficulty in witing a sinple, easy to understand external
specification wusually indicates a product that users will never be able
to use confidently and without error (i.e., a worthless product).

5. Efficiency. In nost cases high efficiency is a lowpriority goal.
However, since good turnaround and response tine are very inportant,
nodi fications in certain critical areas nust be designed so they do not

reduce the effective anount of conputing power to the user. Note that
in alnost all cases, efficiency goals are handl ed at the design |evel,
or by not doing a project at all if it wll detrimentally affect

Copyright, 1984, Mchigan State University Board of Trustees

Coding Quidelines - STRAP #9.4
Page 2 :

turnaround. Trying to squeeze a few m croseconds out of a piece of code
by "tricky" programming typically results in no significant gain at a
great cost in reliability and nodifiability.

S nplicity and Precision

The above goals lead to two prinary principles for design and coding:
sinplicity and precision. These two principles are the prinmary basis for the
rules laid down in STRAP 9.

Sinplicity. Conplexity is probably the greatest single foe to each of the
above nentioned goals. Be nodest. Design small nodul es that have a single,
wel | -defined function.

Sinplicity should apply to external specifications, internal design, mnodule
function, nodule entry/exit conditions, programmng technique, etc. A good
structure design chart, witten before coding begins, will insure that your

nodul es are sinpl e.

Precision. The other najor eneny of successful systens progranmng is
i npreci sion (vagueness, indefiniteness, or downright slop). A design is of
little value if specifics are not clearly laid out.

Precision in programming is of tenfold nore inportance. Exact definition of
-data and processes is vital to the health of any non-trivial (greater than 30
lines?) program Al variables need their use described, including type,
possible values, context of wuse, etc. Every routine nust have an item zed
list of entry conditions, exit conditions and how they are related (i.e., what
the routine does).... This is the key to nodul ar programming. Violate it and
instead of a sinple collection of sinple nodules (which is generally easy to
foll ow and understand), you will have essentially one giant program (since the
reader nust keep all of the unwitten specifications in his head) which wll
prove to be hard to maintain, if not inpossible to debug.

These two primary principles, sinplicity and precision, are the key to
designing and programming code that can be debugged, docunented, and
nmai nt ai ned.

Codi ng Qui delines - STRAP #9.4
Page 3
Tabl e of Contents

1.0 GComments within a Program. ... 7
1.1 dobal comments: . 7

1.2 Wthin the Code === 8
1.2.1 Subroutines (or other logically conplete sections of code) 8
1.2.2 NACRCB 10
1.2.3 Tables = 10
1.2.4 Narrative . 10
1.2.5 Correction Hstory - 10

1.3 UPDATE comments:. 11
1.4 DOCK . 11

2.0 Design and Coding Practices 12
2.1 Structure S 12

2.2 Wer nmessages and diagnostics ... 13

2.3 FError detection, analysis, and processing 13

2.4 Copyright 15

2.5 UPDATE common decks. . . 15

3.0 Synbols and Names (including routines, variables, macros, etc.). - 15
3.1 Ceneral namng rules . 15

3.2 Synbol usage ... -~ 17
4.0 UPDATE Conventions o 18
4.1 Deck Reseguencing 18
4.2 UPDATE Abbreviations .. . 18
4.3 Correction Deck Structure .. - 18
4.4 Common decks. 19
4.5 *YANX ldentifiers = - 19

Coding Quidelines - STRAP #9.4

Page 4

4.6 Mscellaneous 19
5.0 GOWASS Conventions. 20
51 General Quidelines 20
5 1.1 Be clear. 20
5.1.2 Be careful . . 21

5.2 General in-code comments. 22
5.3 dobal Restrictions. o 22
5.4 Synbol definition and usage 24
5.5 Scope text synbols 25
5.5.1 Synbol conventions to reference table entries. . .. = . = . . 25
5.5.2 Cher text synbol conventions:. 25
5.5.3 Table prefixes in synbol table 26

5.6 CGeneral pseudo-op usage 27
5.6.1 DATA and QON usage. 27
5.6.2 BASE and CCDE usage. 28
5.6.3 COWENT usage. 28
5.6.4 VFD usage 28
5.6.5 USE, ORG and other block counter operations. 28
5.6.6 LIST options. 28
5.6.7 QUAL pseudo-0p. 29

5.7 WMacro definition (including OPDEF, CPOP, PPCP, etc.) 30
5. 7.1 General ... 30
5.7.2 Things you must not do with macros:. 31

58 MACRO usage L o031
5,9 CDC Central Processor Coding 31
5.10 CDC Peripheral Processor Coding. 33

5.10.1 Direct storage usage 33

6.0

7.0

Codi ng Quidelines - STRAP #9.4

Page 5

5.10.2 General practice 35
5.10.3 Newor significantly altered PP routines. = . 37
5.10.4 PP Macro Usage 37

| NTERDATA coding o 37
6.1 Mechanics . 37
6.2 Ceneral restrictions. [38
6.3 Aignment problens . . 39
6.4 Loading halfwords . . . 40
6.5 Logical and arithnetic conpares 40
6.6 BXH and BXLE === 40
6.7 Register Conventions 41
6.7.1 RO and R41
6.7.2 ISRs and SVCs 41
6.7.3 Subroutine Parameter Registers4
6.7.4 Scratch Registers . . . 41
6.7.5 RC Problens. 42

6.8 Disabling Interrupts 42
FTN Codi ng Standards .. 43
7.1 Standard conformng 43
7.2 Indentation43
7.3 Synbols .. . N 43
7.4 DO 1OOPS. . . 43
7.5 |F statements. 44
7.6 QOTO statements. 44
7.7 Intrinsic Functions 44
7.8 Diagnostics. .. . 44
7.9 Subroutine usage ... 44

Codi ng Qui delines - STRAP #9.4

Page 6

8.0 Ceneral Practices L 45
81 File manipulation ... 45
8.2 UWse of the no-op feature in the QAN IAN instructions. . === = . 47
83 Witing into ECS (or reading fromECS) == = . . 49
8.4 OChannels and Interlocks == 49
8.5 Fles 49
8.6 Recovery ... 49
8.7 Menmory usage 49
8.8 Docunentation o ... 50

Coding Quidelines - STRAP #9.4
Page 7

Ceneral Quide-lines

There are nmany guide-lines for design and coding that should be followed
regardl ess of the |anguage being used. The particular inplementation of these
guide-lines may differ among the |anguages, but the intent spelled out here
nust be observed.

If you feel that any of these conventions seriously adversely affect your
project, talk it over wth your project |eader (or teamnenber) and the
systens supervisor; exceptions can be nmade.

Al quotes are fromE. Yourdon's book, Techniques of Program Structure and
Design, the first six chapters of which you are expected to read and know
t hor oughl y.

1.0 Comments within a Program

Page ejects, titles, spacing, etc. should be used to visually aid the
reader of your code.

Abbrevi ations should only be used when the meaning is clear. For
exanple. "RBT' for Record Block Table is acceptable in a routine dealing
with this table; however RBT for Retry Bl ock Test woul d not be acceptabl e
in the same routine. "QR" is the only acceptabl e abbreviation for
output register (do not use"OR'); "NM is the only acceptable
abbreviation for nunber (dp not use "NO.").

It is always better to avoi d abbreviations for nanes (spell out "nunber")
and nmul tiple abbreviations for the sane name nust never be used.

In line in code coments should be terse, but still give the program the
i nformati on needed.

At all times an effort should be made to provi de neani ngful comments that
will be read and understood by other programrers. Cute, coarse,
derogatory comrents may be funny the first tinme, but they inhibit easy
conpr ehensi on of the code and nust be avoided. Furthernore, all conments
shoul d be spelled correctly and not be chopped off by sequencing. M nor
spelling nistakes are acceptable as long as they are not frequent and do
not inpair the conprehension of the code.

1.1 dobal conments:

At the beginning of the nmain nmodule of a routine there should be a
conplete description of the routine. This would include concise
external specifications, internal flow, functions of the najor
nodul es, locations of descriptions of najor tables, description of
files used, any debugging aids, and how to conpile, load, and
execute the routine. A so, the programlibrary on which it resides
shoul d be told. The conpile, load, etc. information should be near
the very begi nning of the routine.

Codi ng Qui delines - STRAP #9.4

Page 8

1.2

This description nust be visually presented in a neat, easy to
foll ow manner. It should be expected that programmers woul d read
this section to orient thensel ves before maki ng any nodificati ons.

Wthin the Code
1.2.1 Subroutines (or other |ogically conplete sections of code)
Subroutines nust be docunented at the beginning with (in this
order): :
- purpose.
- what high level |anguage other than the one bei ng used
towite this can call it

(FTN, G3BA., SYMPL) if none, this line can be omtted.

- entry conditions (‘A register, direct cells, high
nenory pointers, registers set, etc.).

- paraneter neani ngs and possible values (that are entry
condi tions).

- exit conditions.
- paraneters that are exit conditions
= special exit conditions.

- direct cells, registers, or other data areas altered.
(Registers used are not given if the routine is witten
in a high level |anguage.)

- error handling.

- subroutines called. (and, on the sane line, what the
subroutine will do)

- special conditions or cautions (particularly for the
nodi fier of this routine).

- narrative of how it is going to acconplish its task
The narrative rmust be in outline or structured english
style with proper indentation. If it is truly
straightforward a statenent to that effect may be nade.

Again, this narrative should be concise. Since it
shoul d be describing a snall nodule, if you have to say
too much then you have probably included too rmuch in
t he code.

Codi ng Quidelines - STRAP #9.4
Page 9

These comments nust be presented in visually neat fashion.
The entry/exit statenents nust conpletely specify the
requirenments of the routine. That is, this subroutine could
be replaced by a ''black box'' that would function correctly
if the specifications in this description were foll owed.

For exanpl e (a Conpass subroutine):

SUBRQUTI NE READUR - RCUTI NE TO READ A UNI T RECCRD.
* CALLABLE BY: FTN

* BENTRY: - CALL READLR (LFN ARRAY)

* VWHERE:

* LFN = THE LO3d CAL Fl LE NAME.
* ARRAY = THE ARRAY VH CH W LL

* RECEl VE THE DATA

*

* EXIT: ARRAY |S FILLED WTH THE NEXT CARD
* IN 80RL FORVAT.

* ARRAY(1) HAS -1 IF ECGF QR

*

-2 |F EO FOUND.
USES: ALL BUT AO

CALLS: cPC TO MAKE THE READ REQUEST..
CPENFL TO CPEN THE FI LE

METHCD:

I F FILE NOT GPEN THEN OPENFL(LFN);

ok 3k X X ¥ % & X F

VH LEse. »e

An alternative ENTRY/ EXIT description is

* CALLI NG SEQUENCE: CALL READUR(LFN, ARRAY)

* ENTRY: LFN HAS THE LOQ CAL FILE NAME LJZF

*

* EXI T: ARRAY HAS THE DATA READ | N 80RL FORVAT
* ARRAY(1) HAS -1 |F AN ECF WAS READ;

* -2 IF AN EQl .

If ARRAY were sonething which was set before entry and
nodi fied by the subroutine, it would appear in both the ENTRY
and EXI' T commrent s.

It is very inportant that any nodification which causes this
docurmentation to be incorrect also include a change to the
docunent at i on.

Codi ng Qui del i nes - STRAP #9. 4

Page 10

1.2.2

1.2.3

1.2.4

1.2.5

MACRCS

Macros must include the same kind of general comments that
are specified for subroutines. Specifically, every paraneter
nust be described. The general purpose of the macro nust be
stated. The registers, direct cells, data areas, (or what
ever is relavent for the | anguage) used nmust be stated. For
non-trivial mnmacros, the internal synbols, algorithm etc.
nust be described. The entire macro description nust be done
in a visually clear fashion where, for exanple, the neaning
of each paraneter is readily apparent.

Tabl es

Al tables nmust be docunented with:

what the table is, the meaning of each field in the
table, and how to add a new entry to the table
(including all things which nust be altered when a
newtable entry i s added).

Adding a new entry to a table and causing the proper routines
to function with this new entry nmust be as sinple as
possible. It should not require nodifications in nmany pl aces
in the code.

Narrative

Each small section of code should contain a narrative header
This narrative should be a further refinenent of the genera
narrative placed at the beginning of the routine. The
narrative, unless it is repetitive, should al so mention what
the vital data areas (registers, direct cells, etc.) contain
that will be used or nust be preserved over the next section.

This narrative nust be visually separated from the code by
either blank lines or a line with only the comrent indication
character preceding and following the narrative.

Correction H story

If this is anodification to a routine, it nust include an
entry in the correction history.

The format for these comments is in STRAP 3.

It is inportant that the justification for the nmodification
be thoroughly explained in the correction history section.
If thisis afix to a problem the correction history nust
specifically state what the probl emwas and what was done to
fix the problem Snply "fix bug in 1AJ" or "convert routine

1.3

14

Codi ng Quidelines - STRAP #9.4
Page 11

to SOOPEH HUSTLER' is not appropriate. However, it shoul d
not, usually, detail specifically what was done - |eave this
for the narrative to follow That is, "Add processing of the
RG paraneter on the job card for rate group determnation"
woul d be accept abl e.

If the- correction history section does not exist, the
nodi fication nust include it wunder a separate identifier.
This identifier would be "CHhnnnnn"; The format for creating
the correction history section is in STRAP 3.

UPDATE comment s:

Most UPDATE comments are to facilitate the preparation of the LSD
docunent. These comments nust be well witten, in good English, and
they nmust be easy to understand. See STRAP 3 on nodification deck
comrent s.

UPDATE comments (not intended for the LSD) can be used to explain
the reason for the nodification when this reason would not be
appropriate to appear in the source |istings.

DOCK

Wiile it is not required to set up your comrents so that DOCK can
extract them you are strongly urged to consider this. In any
routi ne that does use DOCK, all nodifications nust continue that
practi ce.

Codi ng Qui delines - STRAP #9. 4

Page 12

2.0 Design and Codi ng Practices

2.1 Structure

Al routines are expected to conformto structured programmng, top

down devel oprent rul es. AU Structured programmng is a
phi | osophy of witing prograns according to a set of rigid rules in
order to decrease testing problens, increase productivity and

increase the readability of the resulting program"

Before coding of the routine begins, several structured design
charts of the routine nust be created. These designs shoul d be
eval uated and the best one choosen. The book, Structured Design, by
E. Yourdon and L. Constantine describes howto create and eval uate
a design. If this procedure is followed, then your design wll be
nodul ar, sinple, and straightforward. This design chart must be
reviewed by your teammenber or project |eader. You are encouraged
to have several design wal kt hroughs for any naj or project.

The resulting program should be sinple and straightforward. For
exanple, you nust avoid programmng that branches back on itself,
has multiple exit points or nultiple return points. (Oly one

entry-one exit per routine).
For exanple, this structure woul d be unaccept abl e:

IF(XEQ 0) GOTO?20
A=T
10 CONTI NUE

-

Q0 TO 99
20 A=23
& TO 10

The only tinme that a convoluted or "junping into the mddle" code
can even be considered is when nmenory or tine is extrenmely critical.
This is unlikely to be truly the case in any situation.

"More conputing sins are commtted in the name of efficiency
(without necessarily achieving it) than for any other single

reason—ncluding blind stupidity. Che of these sins is the
construction of a "rat's nest" of control flowwhich exploits a few
common construction sequences. This is precisely the form of

programmng that must be elimnated if we are ever to build correct,
under st andabl e and nodi fi abl e systens. "

The "IF... THEN .. ELSE' structure can be used to avoid miltiple
returns in a function:

2.2

Codi ng Quidelines - STRAP #9.4
Page 13

LOQ CAL FUNCTI ON ANSYES(| NPT)

CHARACTER | NPT* (*)

IF (INPT .EQ 'YES) THEN
ANSYES = . TRUE

ELSE
ANSYES = . FALSE

ENDI F

RETURN

Indentation of higher |evel |anguages to show structure and Ilevels
shoul d be done whenever possi bl e.

To pronote and insure nmodul arity, each nodul e should be a separate
subroutine and have one entry and one exit point. Usually, the
routine should return any error condition to its caller. Wien the
routines are under one identifier in COWASS, then the QUAL pseudo
op should be used to insure separation. See the COWASS section for
further details.

User nessages and di agnostics

User messages nmust be polite, concise, jargon free sentences.
Abbreviations nust be avoi ded whenever possible. Cute remarks are
not allowed (i.e., "Sorry, Charlie"). As nuch information as

possible must be given to help the user find his problem For
exanpl e, do not give the messages "OONTROL CARD PARAMETER ERRCR',
"IN .LT. FIRST", or "FL EXCEEDS MFL"; instead use nessages such as
"UNRECOCGN ZED PARAMETER LO', " IN (0354) IS LESS THAN FIRST
(1354)", or "MEMIRY REQUEST FCR 120000 EXCEEDS THE 100000 MAXI MUM'.

Exi sting error processing and nmessage delivery routines, such as D00
and 6WY nust be used whenever possible.

2.3 Eror detection, analysis, and processing

Wien testing user or operator input you rmust check for all |egal
values and issue a diagnostic if the input fails these tests. For
exanpl e, you nust not assume that if the input is not "YES' it is
"NO'" or if input starts with an "N' it means "NO'.

Simlarily, you nust insure that only legal input is given as
paraneters to MACRCS.

Qutput to users nust be checked for reasonabl eness. For exanple, it
is doubtful that one could use 262142 CPU seconds in one job;
consequently, any routine that tells the user how many CPU seconds
were used could test for a reasonable value. This is especially
important for any accounting or authorization file deductions.

Wien adding entries, values, or codes to a CDC defined table,
di agnostic list, etc., you nust either use the val ues that have been
allocated for installations by COC or you nust |eave a sizable area

Codi ng Quidelines - STRAP #9.4

Page 14

into which CDC can expand. A typical nethod is to use negative
nunbers when CDCis using positive nunbers. Al so, when this is to
be done, tell the Systens Supervisor so that an installation
reservation can be obtai ned from CDC.

This may cause sone difficulty since CDC code tends to have nany
hi dden assunptions, such as the nunber wll be positive, etc.
However, we nust avoid the inconpatibilities that wll occur when
CDC expands their usage. Consequently, the extra hassle is worth
the tine spent.

Wienever reasonable (and it is usually reasonable) you nust include
checking on internally generated data. This includes tests such as
insuring a valid push/pop of a stack, insuring a value in a junp
vector is good, an index is wthin the dinension allocated, an
argurrent has a valid range, or a linked list is properly formatted.

This internal error checking is best started during the design phase
of the project. For exanple, a linked list could be designed so the
nodul es could easily tell whether an entry had been msiinked or the
l'inks cl obbered. Furthermore, this design analysis would al so
determ ne whether the fragile linking process was truly necessary!

At some nodule levels it is not practical to do interna
checki ng—you nust depend upon earlier checking. However, you nust
design with the idea of always testing and elimnate those tests
that consune too much resource.

For exanple a routine that packs 'n' characters into one word shoul d
check that 'n'" is not bigger than the nunber of characters that wll
fit inawrd. Aso, the termnation value on a DO loop could be
checked for being wthin an array if the loop variable is used to
index into the array. However, it is not practical to check every
reference to the array for being w thin bounds.

No code should nodify itself unless there is no other way to
acconplish the task. Wth PP s because of the restricted nenory
space and regi sters this does becone necessary. However, for CP and
Interdata code this is seldom (if ever) absolutely necessary and
will be permtted only on a case-by-case "prior approval by the
project |eader" basis.

Counted loops (like DOl oops) that are supposed to exit before the
count is exhausted nust include code for the case when the count is
exhaust ed.

No infinite loops should be witten. Al |oops should have a finite
termnation within a reasonable time. In a few cases, a | oop rmay
depend upon sore outside action to termnate it (the error flag
being set, for exanple). It is better to abort the job or the
system than | oop forever. A system crash is preferred to an
infinite loop because users are notified mnore quickly about a
problemand it is easier for the crash analyzer to determne what

Codi ng Qui delines - STRAP #9. 4
Page 15

happened. Also if we ever devel op an automatic restart process, it
will probably be initially done based on the occurance of a crash.

Al entries to error routines or systemcrashers nust be such that a
dunp can show the precise caller and reason. For exanple, FCORTRAN
code with a nunber of "QO TO 999" statenents where 999 is the error
section is not acceptable unless there is some error index that wll
uni quel y specify were the error occured.

2.4 Copyright

New routines nmust contain, at the beginning of the first program a
copyright statenent. This statement nust read: "OOPYR GHT year,
M CH GAN STATE UNI VERSI TY, BOARD OF TRUSTEES." where year is the
year when coding started. This should be anong the first lines you
wite when starting to code a new routine.

If aroutine is extensively revised, it nust include the copyright
statement. |If the routine already has a copyright statenment by MU,
then the new year should be added to the year list (do not renove
the original year).

2.5 UPDATE common decks

UPDATE conmmon decks used between program libraries should be placed
on the OOMDECK program library. The creation of general utility
routines is encouraged. These should al so be placed on the COMDEXK
PL. Routines placed on this programlibrary nust conformto the
conventions stated there (and in STRAP 9) when applicable. For
exanpl e: the DOCK comment style nust be preserved, the register
usage nust be followed, etc.

It is expected that project leaders will take the extra tine to

cause common decks to be created when they recognize a general
utility appearing in their group's code. :

3.0 Synbols and Nanes (including routines, variables, nmacros, etc.)

3.1 Ceneral nanming rules

The appropriate choice of nanes allows for easier conprehension of
the code. However, you nust be very careful about the names you
choose; otherw se, you can create confusion, increase your debuggi ng
tine, and create maintenance problens for those that follow

Exanpl es:
1AR and I AR are a very poor choice of nanes because it is easy to

confuse the "1" withan "1". Also, "ONE' and "ONE' woul d be easily
msread if the "oh" were not sl|lashed.

Codi ng Cuidelines - STRAP #9.4

Page 16

A branching macro named "NUMIEST" is to test whether a character is
a nunber. You might expect it to branch if character was a number
but you are not sure and could easily be wong! A better name which
woul d not be ambi guous should have been chosen.

Al 'so suppose two flags were defined: DATAFLG and ERRFLG DATAFLG
has zero if there is data present; ERRFLGiS non-zero on an error
The testing of these flags woul d soon becone confusing because of
their opposite meanings on a zero test.

Consi der, also, the synbols "FETP" and "FNTP" which can be easily
read as FET Present, and FNT Present. However, the bit is zero if
the FET (or FNT) is present. The sense of both bits were kept the
sane, fortunately, but the synbol nanme chosen was backwards since it
Is usual to associate the set (or 1, or non-zero) condition wth
true.

The previous exanple also illustrates another problemthat nust be
avoided: There is only one character difference between the two
synbols. A mstake that replaced the "N' with an "E" will create a
bug that may be difficult to find.

The eye has a tendency to see what it expects to see. Wt it
expects to see is influenced by the surroundings. Consequently,
symbol s must be chosen to maximze their differences.

To mnimze the problens illustrated above the following rules are
to be followed when creating synbols:

a) Meaningful mmenonic synbols nmust be used; words should be
spel led out (correctly) where possible.

b) Synbols nust differ inat least two characters, preferably
three; one of the differing characters nust be the |ast
character (if there is only a difference of two).

For ammw:
Unacceptabl e pairs Acceptabl e pairs
W FETXYZ W FETXYZ
W FNTXYZ W FXYZ
ABCX ACBX
ABCY ABYC
LETCRUP ABCDEFX

GETCRUP H JKLMX

Coding Cuidelines - STRAP #9.4
Page 17

c) If it looks like a text synbol (see below) then it nust
fulfill the neaning for that style. For example: Wxxx nust
be a word offset in a table; V.xxx must be a nmask based on
starting (right-nmost) bit and length; Y.xxx is not used al one
as a shift count, etc.

d) Symbols that name flags or test conditions nust be naned and
tested so that a true conditionis a "1" (or non-zero) and a
false conditionis a "0" (or zero). That is, if abit is zero
when a file is busy and one if it is not, then it should be
called a not busy flag, (or bit), or conplete bit, or some
simlar nane.

e) Macro names that test and junp or test and set a condition
code should be naned to indicate when they junp (and that they
jump) or when the condition code is set to a one. For
example, "IFNUM or "MIRD El F* not "NUMIEST" or "KILLMIR'.

f) Because of the problens with 63 vs. 64 character set, the use
of colons in synbol nanes nust be avoi ded.

3.2 Synbol usage

Any programin a high level language that does not have a text
facility (like FORTRAN) must have a COWPASS routine that establishes
system text symbol values in COMWON blocks for the high Ileve
routine to use. O, alternately, the high level routine can cal
upon a COWPASS programto extract the val ue.

A set of simlar synbol definitions nust be grouped together. For
example, all synbols for direct menory, all constants for accessing
a specific table, etc. Also, synbols used throughout a program (or
those that mght be) nust be defined at the start of the routine.
Symbol s used only in one place, such as to define a table, should be
placed just before they are used.

Only one synbol name should normally be wused for a location, or
variable (this does not include the D.TW etc. names for PP direct
menory). Therefore, EQU VALENCE in FORTRAN or simlar assignments
in COWASS nust not be done unless there is a valid reason. Since
space is least available in PP nenory, nost of the valid reasons
will occur there. See the COWPASS section for further restrictions.

Codi ng Quidelines - STRAP #9.4

Page 18

4.0 UPDATE Conventi ons

4.1

4.2

4.3

Deck Resequenci ng

Resequenci ng must not be done unless there is nearly a total rewite
of the code. It is also possible to resequence a deck if the deck
nanme nust be changed and there is no one el se working on changes to
the routine (including CDC). Resequencing should be avoi ded since
it causes the identifiers in the listing and the correction history
to be | ost.

UPDATE Abbr evi ati ons

Any UPDATE abbrevi ation should not depend upon a previous update
control card. For exanple:
*D d Q 359, 370

is fine. However:
*D 359, 370

is not allowed because it depends upon a previous control card to
set the deck nane. This is done to prevent possible errors when
sonmeone (such as the originator) slightly nodifies a correction
deck.

Updat e abbreviations for the directives are all owed.
Correction Deck Structure

The correction identifiers for UPDATE should include your initials
for the first three characters and then some mmenonic for the
correction. For exanple: '

* | DENT, VIVBADF

(See STRAP 3 on nodification decks for further details and
exanpl es.)

However, the texts have unique identifiers starting with a slash
followed by the. deck nane. This structure should be preserved as
much as possible. Consequently, the modifier's initials should be
appended to the end of the standard identifier; only the |ast
characters of the deck's name should be del eted when necessary to
create a unique identifier. For exanple:

*| DENT / CPAVNSST

This would be a correction identifer for the Control Point Area text
deck witten by a person with the initials VM5, the characters ST
m ght have sone neani ng about the nodification.

4.4

4.5

4.6

Codi ng Qui delines - STRAP #9.4
Page 19

*| DENT / MTROQJSF

This would be a correction identifier for the MR conmunication
tables (/MIROMV; the 'M is deleted in order to fit in the
nodi fier's initials.

The correction deck nust end with the proper "*COWI LE' control card
for that deck

One IDENT (or set of IDENTS) should be used for one nodification or
correction. For exanple, the ident JSFRATS coul d be used for the
nodification to install the rapid access service. However, if this
was too extensive or extended over several PL's, then JSFRATSI,
JSFRATS2, etc. coul d be used.

Common decks

The use of common decks is encouraged. This use is especially
inportant for OCOMMON storage decl arations, comron procedures, etc.
However, the use of the common deck nust be well docurmented as to
its beginning and end as well as its purpose.

Calls to common decks nust have cards preceding and follow ng them
such as:

* OCOMWDON DECK ABC USED AT *+
*CALL ABC
* END G- GCOWDN DECK ABC AT *-

*YANK ldentifiers

If a nodification is being renoved with a YANK, all code wunder the
identifier used for the YANK should relate only to YANK. That is,
if at some later tine we wish to undo the YANK by YANKing the YANK
i dent, we should not al so | ose unrel ated code.

Frequently this neans that the YANK is done under a separate
identifier; however, if the YANK results in unusabl e code, then the
yank identifier should also include the necessary code to nake it
usabl e, [usable does not mean bug free].

M scel | aneous

Pl ease refer fo STRAP 3 for additional UPDATE restrictions based on
instal |l ati on consi derati ons.

Codi ng Qui delines - STRAP #9.4
Page 20

5.0 COWASS Conventi ons

Conpass al ways takes longer to correctly code, debug, and maintain than
hi gher level |anguages. However, it does currently offer the possible

advantages of snaller code, faster executions and flexibility. Do NOT
use Conpass if these are not needed. Use sone higher |evel |anguage (if
avai | abl e). _

5.1 Ceneral Quidelines
5.1.1 Be clear
Al COWASS code nust be straightforward and sinple. Fancy

tricks to save a few nicroseconds are very, very seldomworth
the time to debug and mai nt ai n.

For exanpl e:

1IX4 X7-X3

AX4 59 M N WHEN X3/ x4, 1t, x7
BX7 Xa* X7 VS. BX7 X3

BX3 - X4* X3 M N DONE

BX7 X7- X3

Both of these will end with X7 having the snaller of X7 and
X3. Wiile the code on the left is faster on a CYBER 175 and
it mght take less nenory, it is definitely not worth the
cost of confusion, naintenance and debuggi ng except in very
rare circunstances.

Furthernore, tricks to avoid NCOP's such as SX3 A3+0 nmust not
be done. Again, it is not worth the maintenance cost (a
future nodification mght alter the instruction placenent).

There exi st sone obscure algorithns on the COVDECK PL. Thi s
is the only place for this type of code since the maintenance
and debuggi ng cost can be spread over a nunber of projects.

Before the introductory cooments on a routine or nodule,
place a SPACE card with sufficient line count to insure that
the comrents are all on one page (or use a TITLE card).
Also, the last introductory comrent |ine nmust be separated
fromthe code.

Wien a table is created that uses the ordinal of the table to
obtain an entry, then the LQOC pseudo op should be used to
show the table ordinal in the listing. A ways set "*" back
at the end of the table (e.g., LOC *0).

Wien nodi fying COC code for installation into our system
there nay be times when CDC inplicitly assumes a table
structure. For exanple, there may be a "LDD D Z1+3" to

51.2

Codi ng Quidelines - STRAP #9.4
Page 21

obtain the nunber of the current word pair in the FNT. The
best method of installing this CDC code woul d be to change
the instruction to "LOADFLD D. Z1+C FRBCRD, FRBCRD'; however,
this may be inpractical because of the nunber of such
changes. An alternative is to place ASSUME s at the
begi nning of the program which would document the
dependenci es.

Be careful

There have been a nunber of problenms recently when coders
forgot that a_ value (such as a line count) could becomre
greater than 2 7_1. Wen this happens the set instructions
do a sign extend (or truncate the val ue).

Wien doing an indexed junp (i.e., JP B2) you nust insure,
whenever possible, that the junmp is within range. You shoul d
al so | eave sone trace as to the last value used on the junp.
That is, store the register before the junp. This will help
the person anal yzing the crash know whether the junp value
was good.

A simlar problemcan occur with linked lists. It is quite
possible for some bug to cause a PP to alter a link or for
anot her part of your programto incorrectly alter a |link.

Consequent |y, you must include validation tests when you nove
along a list or use values froma list.

For exanple, you night design a linked list with forward and
backward pointers. Then, as you nove forward along this
list, you should check to insure the backward pointer points
to the location you came from Another possibility is to
check a known value in the data (supply redundancy). The
verification of the PF flag in the RBT, for a file whose FNT
says it is a PF, is an exanple of redundancy checking..

If the CPMACTX macros are available, a routine witten in
Conpass nust have entry registers specified by the EREG
Macro, return registers specified by RREG registers used
specified by UREG and routines called specified by CALLS.

Macros nust be used to generate tables so that a new table
entry sinply consists of a sinple macro statenent. The only
exception is when a table entry can be created by a COON or
DATA pseudo op. (There is a snall subset of tables for which
this is not true, but they will be handl ed on a case-by-case
basi s) .

A ways explicitly state whether a byte or a constant is to be
used as a test value. Frequently, one will forget to specify
a byte, and the default constant assunption wll be wong.

Codi ng Quidelines - STRAP #9. 4

Page 22

5.2 Ceneral in-code conments

Accurate line-by-line comments nust be placed there when the code is

witten, not after debugging is finished. The comrent on an
instruction line should refer only to that instruction, do not
continue the conment onto the next instruction line. In case a
higher priority project interrupts your work, then it wll be

possi bl e for you or soneone else to pick it up several nmonths |ater.
(If you don't know what you are doing, you have not spent enough
time designing. o back and conplete the design before you begin to
code.)

NOTE: This does not nean that every line nust be commented. In
fact, every line nust not be comented. If good global narrative
comments are provided and nodular coding is followed then in-line
comments will be nuch | ess.

As a guide-line:

1. Al junps and tests nust be neaningfully and concisely
expl ai ned. However, it is not necessary to explain the
conputer instruction. That is, for "NJN ALPHA'" the conment
could be "JUW IF FILE NOT BUSY"; you do not need to say "IF
FI LE NOT BUSY THEN GO TO ALPHA" or "IF NO\ZERO THEN FILE 1S
NOT BUSY GO TO ALPHA. "

2. Al storage locations nust comment on what is stored there.

3. All synbols assigned values through EQU s or SET' S nust be
conment ed.

4. Except for trivial cases in higher level |anguages all the
vari abl es (except tenporaries and loop counters) rmust be
commented on at the beginning of the program

5.3 (Qdobal Restrictions

The "*" synbol or simlar self-reference synbols nust not be used.
Thi s means that code such as:

ZJIN *+3 or HH SA1l Bl
LIM NOTHERE NZ X1,*

nust not be done. Smlarily 'IF tests, 'BEAHZ ranges, 'DWF
ranges, etc. nmust have |labels on them They nust not be bracketed
with unnamed termnation or have a counted range. The only
exception to this prohibition is for spacing in a BSS, for exanple:
"BSS D. PPONE-*. "

Codi ng Qui delines - STRAP #9. 4
Page 23

RMI' code nust have a nane and be assenbled by the named HERE
request. The ending RMI should al so be | abeled and specified as the
end.

Wien naki ng systemrequests you nust use a macro if one exists. For
exanpl e, the CPSTAT macro nust be used instead of naking an "SYS 3"
RA+1 (or SYS=) call. Note that a macro exists if it is on any text.
You can not avoid the nacro because it does not exist on the text
you are using.

For all new routines (or major rewites of old routines) the
location field nust start in colum 1; the operation field nust
start in colum 11; the address field nmust start in colum 20; and
the comments field nmust start in colum 36. These are the standard
colums. However, any nodification to a routine with a clearly
defined convention other than 1, 11, 20, and 36 nust follow that

routine's convention. |If the entire routine is greatly junbled,
then the standard convention should be followed even if three or
four lines around the nodification are consistent. Exception; The

operation field for a structured programmng macro (WEN CORWEN
ORELSE, DONE, LOOP, WHI LE, etc.) should beginin colum 9 for the
first level and colum 10 for the second level. This will allowa
smal | anmount of indentation to visually bracket the code.

D spl ay coded data nust never be given in octal. For exanple, "ZRO
EQU 2R00" not "ZRO EQU 3333B".

Nurreri c data, whenever possible, should be given in its natural
f ormat . If it is not possible, a comment must describe its natural
form (Natural formneans, for exanple, using 1.35 not its floating
poi nt octal equivalent.)

Expressi ons shoul d be used when they will clarify an operation. For
exanmpl e, "LX2 24-2" would be used instead of "LX2 22" if the shift
woul d have been 24, but the register was already shifted by 2. o
course, synbols would be even better. ("X 59-Q BIT1+Q BI T2").

No address constants can be used. That is, the "SIM 1357", "LDD
25", or "SAlL 1" type of instructions are not all owed.

There may be no Conpass warning error diagnostics in the routines
being installed. This neans that any nodification nust include
removing warning errors even if that nodification did not cause them
to occur.

Loop tests nust termnate with the nost inclusive test possible.
For exanple, on a postive, counting down to zero, |oop where the
test "NZ B3, LOOP' could be used to execute the loop; "GI B3, BO LOCOP'
would be better because it will termnate when B3 is m nus—even
t hough this could "never" happen.

Codi ng Qui delines - STRAP #9. 4
Page 24

5.4 Synbol definition and usage

Synbol s roust be used to describe and to reference the length, wdth,
byte position, bit position, etc. of each entry in all tables that
have nmore than one entry per word. This synbol usage nust be such
that if an entry within a table is noved, a reassenbly of the code
will cause the reference to be correct.

Qccasionally, significant time and devel opment can be saved by
inplicitly assumng the position and size of an entry. Wen this is
done, the ASSUME nmacro nmust be used to mark this assunption

However, it is prefered to not nake any assunpti ons.

Synbols nust be used in instructions or table entries to convey
nmeaning and provide cross reference informati on even when they are
not expected to change.

For exanpl e:

EQPSTAT EQJ 1300B equi prent status
NEWPACE EQU 1RT top of form

Neither the equipment status nor the forns control for top of form
are likely to change. However, by using synbols it is much easier
to find all references to these constants. Al so, experience has
shown that sone "unchangi ng" synbols do, indeed, change! Note that
this does not nean the synbol for the top of form should be used in
a DS pseudo op. However, a micro could be defined and used in the
Dl S. (It is expected that mcros wll someday be cross-referenced;
also it is nuch easier to change a single mcro definition.)

Wien synbol s are defined, they must be defined in terns nornal for
that synbol . :

For exanpl e:

Y. CVADDR EQU 17 NEWPAGE EQU 1RT
not or not
Y. QVADDR EQU 21 B NEWPAGE EQU 24B

Al so, a comrent explaining the synbol nust be given.

Codi ng Qui delines - STRAP #9.4
Page 25

5.5 Scope text synbols

Scope text synbols help clarify the code, inprove flexibility, and
provide the neans to obtain a global cross reference by synbol and
routi ne throughout the system Table additions to the text nust use
the FIELD and WORD nacros. Mew tables, etc., nust follow the
current conventions in this STRAP. (See bel ow)

Most text synbols have a prefix code followed by a period (SC DSTF,

for exanple). These prefix codes have a specific neaning. Synbol
nanes with prefixes that conflict with these neanings must not be
used:

5.5.1 Synbol conventions to reference table entries (bit positions
are nunbered right to left, O0ton).

W - The word address
C - The byte address within the word (12 bit
bytes). Bytes are nunbered left toright, 0 to
4, |If a field crosses a byte boundary, the
value of the Cxxxxx synbol is the |owest
nunber ed byt e.
- The bit position within the byte
The lowest (rightnost) nunbered bit position
within a 60 bit word for that field.
Y. - The width of the value. This should be used
(along with the DECM C pseudo op) to determ ne
the maxi mumval ue for the entry.

Ow

V. - Anmask that will isolate the value (based on
position and width) relative to a byte.
P. - The actual absolute address (or unseal ed

absol ute address) that points to a table
SC. - The scale factor for addresses that need to be

scal ed :

T. - An absolute table address.

LE. - The length (in CMwords) of each entry in a
tabl e

L. - The total length of a table

(Note that in some cases L. is used instead of
LE.; however, future use nust be as descri bed
above.)

5.5.2 Qher text synbol conventions:

AB. - Job card errors (obsol ete)
CC. - (Connect codes
CE. - Function codes for MICE nmonitor requests

CF. - CP.LISP function codes

Codi ng Cui del i nes -

Page 26

STRAP #9. 4
CH. - Pseudo channel numbers
CX. - Corridor requests for CPU nonitor
DT. - Device type codes
EC. - ECS access codes
FDB. - Paraneter codes for the FDB macro
F. - Flag values (i.e. F. ERxxx and F.SSxxx)
l. - Instrunentation Table reference
IL. - CPUnonitor interlock table offset
10. - A Ofunction codes
IP. - Installation paraneters
IT. - 1T function codes
M - Mnitor requests nmade by PP's
N. - Counts and numbers of things
OV. - Display code val ue of PP name
0. - Stack processor order codes
PF. - Permanent file manager function codes
PH. - Phase synbol s
RA. - (bsolete synbols to refer to the lower part of
a CP programs nenory
R - PP resident routines or synbols
SR - Source codes; input/output destinations

SS. - Swap states

TP. - 1TP function codes

WS. - Wait states for CPUMIR EXEC tasks
WI. - Wit states Hustler jobs

XJ. - Exchange package words

XT. - Condeck name

5.5.3 Table prefixes in synbol table

Characters to the right of the dot are frequently used to
identify the table to which a synbol refers. Any synbol
added to an existing table must use the prefix defined for
that table. A unique prefix should be chosen for any new

table added to the system The following is a partial [list
of current prefixes; if you plan to add another prefix, you
should first look thru the "U’ symbols in the cross

reference listing of a text to insure that the prefix you
pi ck is unique.

*APF - APF Tabl e

.CP - Control point area

.CS - CPSTAT return bl ock

.DCT - Disk controller table

.DC - Disk controller table entries
.DFB - Dayfile buffers in C\R

.DF - Dayfile nonitor requests
DR - Library tables

DLL - Disk label protection

5.6 Ceneral

5.6.1

Codi ng Quidelines - STRAP #9.4
Page 27

.DST - Device Status Table (a device is an RVS di sk)
*EC - ECS partition nunbers

*B- - Code value for ECS FNT" s

.BP - ECS partition word

*ER - Error codes

.F - FNT entries

.FD - FEDATA return bl ock

.FDB - Pernanent file definition block

*FET - FET entries

.FNS - FNTSTAT return bl ock

*H - Frequently for Hustler pool table pocket entry
.IN - Installation area

*JS - Job scheduling

.LB - D sk label pointers

*MC - Monitor Communication (between CPU and PP)
.PFC - RBTC entry

.PFD - PFD entry

PH - Installation area within RBTC

PP - PP commnication area

.RA - Wirds 0-77 of control point FL

.RB - RBT bhytes

RBR - RBRtable

.RBT - RBT entry

. RWPP- PP di sk 1/0O conmmuni cation word

.ST - Stack request

.SV - Mscel |l aneous save area in ECS pool entry
T - Tapes table entry

US - Wser table

pseudo- op usage

DATA and CON usage
The DATA or QOON pseudo ops should nornally be used only for

constant data (data that is not altered during the execution

of the program)j. It is usually better to always put val ues
in changing locations rather than depend upon preset | oad.
If all values are set during execution, then the routine can
be nore easily be nade serially re-entrant. Specifically
"DATA 0" nust not be used if some value is to be stored there
later. "BSSZ 1" should be used i nstead.

If DATA itemnust be altered during execution, then it nust
be commented as to the various values it can assune and where
and why the setting takes pl ace.

There should only be one piece of data for each DATA or QN
pseudo op.

Codi ng Quidelines - STRAP #9.4

Page 28

5.6.2

5.6.3

5.6.4

5.6.5

5.6.6

BASE and OCDE usage

The BASE or QODE pseudo ops nmust not be used unless truly
necessary. Wien used, they nust be heavily comrented and
used only in a brief area. The nornal BASE and CCDE are
al ways assuned (decinal base and display code for CDC
conputers).

COWENT usage Any programthat is placed on the dead start
tape (or other library tapes) nust include a COMWENT card
giving a short description of the program This wll make
any | TEM ZE of the tape nore meani ngful. This COWENT shoul d
precede any copyright comrents (including the one in the SST
Macr o) .

VFD usage

The VFD pseudo op should not fill more than one normal word.
That is, the nmaxinumfor one VFD in PP code would be 12 bits;
however, if this were setting up a word to be witten to CM

then it could be 60 bits.

The VFD pseudo op rmust not be used where a CGON or DATA pseudo
op can be used.

USE, ORG and other bl ock counter operations

Pseudo ops that alter the block counter, such as USE and CRG
shoul d be used carefully. Wen they occur outside of nacros
or common decks there should be a reset to the base bl ock;
i nside there should be a reset to the previous bl ock.

These pseudo ops should nornal ly be used to set up data areas
at the beginning of a routine or to allow buffers to
overwite initializing code. They nmust not be used to flip
between code blocks several tines within a page. REQis a
current exanple of what not to do.

The mai n concern here (as el sewhere) is to prevent tricky,
obt use, conpl ex code.

LI ST options

Conpass list options should be used to display the contents
of any macro generated table entries or tables now being
assenbl ed with a HERE pseudo op. Wsually a "LIST G' or "LIST
D' is appropriate. Al so, see section 5.8.1

Coding Quidelines - STRAP #9.4
Page 29

5.6.7 QUAL pseudo-op
The QUAL pseudo op nust be used with care. Properly used it
can ease nai ntenance, prevent bugs, and insure nodul ar code.
| nproper use can just create nore confusion.

QUAL nust be used on higher level nodules (or subroutines)
within a programor routine. This will insure that there are
no entries or references within a nodule that are not
explicitly stated. ly the entry point would be a gl obal
synbol . Snall subroutines should be grouped with one
qual ifier under their parent nodul e.

A qualifier before a synbol "/SUBL/LOCP' nust al nost never be
used (nor can a sequence of QUAL's to acconplish the sane
thing be used). That is, global synbols nust be globally
defined (preferably at the beginning of the program -
subroutine entry points, of course, cannot be). There exist
sone CDC routines where this prohibition cannot be foll owed.

The macro's SUBRT and ENDSUB nust be used (when available) to
specify the start and end respectively, of a subroutine.
These will cause the appropriate QUAL's to be generat ed.

Sone exanpl es of where qualifiers should be used:

* To separate individual functions grouped under one
COWPASS | DENT (see SYS and PFU). In this case all
subroutines local to a given function would be
qualified under t hat function; subr out i nes
available to all functions would have globally
qualified entry points.

* To separate initializing code which will be-
overlayed from the non overlayed code. In this
case there nmust be no reference to any code within
the overl ayed section fromoutside (except for the
entry point).

In summary QJAL's are required to help insure nodularity by
hel ping to prevent convoluted code and insuring that inproper
references are caught early in the debugging of a nodification.

The COWPASS assenbl er programis an exanple of how QUALs must not
be used. This is because each few lines of code has a QUAL PASSI
and and then QUAL PASS2. This adds to the already difficult
process of understanding what is going on.

Codi ng Qui delines - STRAP #9.4

Page 30

5.7 Macro definition (including OGPDEF, CPCP, PPCP, etc.)

5.7.1 General

The intelligent definition and use of macros is encouraged.
Macros should inprove readability, reliability, and flexibility of
your code. Macros used throughout a programor subroutine nust be
defined at the beginning of the routine. If a macro is used in
only one place (defining a table for exanple), it nust be defined
just prior to its use.

The sections on coments, synbol nanes and general codi ng
practices apply to nacro definitions. (Both the nmacro nanes as
well as their paraneters). For exanple; the paraneters nust be
conpl etely verified; "NO should not be assumed if not "YES'.
Condi tion paraneters nust be "ZR', "M", "PL", "NZ" not "Z", "M,
"P', "N' respectively. Value relationships must be EQ for equal,
LT for less than, GI for greater than, CGE for greater than or
equal to, and LE for less than or equal to.

Wien a macro is placed in a text, it nust be preceded by the
appropriate LAB.MAC call. This will keep the cross reference map
up-to-date. |f your programhas many macros defined, the use of

LAB. MAC i s encouraged (required if you have very many).

The use of MACRCE (with meani ngful paraneters) instead of MMCRO i s
encouraged. For exanpl e:

"TABLESET RD=1, OP=1, WR=0, JUMPOPENRD"
is much clearer than

" TABLESET 1,1,0, CPENRD'.

Wien you define a nacro you must not be inconsistent wth existing
general practice and text macros unless the practice is being
phased out (probably it will be counter to STRAP 9). For exanpl e:
testing and junping nacros give the junp address in the address
field; consequently you nust not define a nacro that will have the
junp address in the location field.

Wien defining a macro, especially for a table entry, try to get
the actual code generation into one conpass statenent. This will
reduce the nunber of lines generated for the macro call. [If this
is not practical, a "LIST -J" can precede the table to reduce the
size of the listing (put a "LIST *" after the table).

Codi ng Quidelines - STRAP #9.4
Page 31

5.7.2 Things you nust not do wth nacros:

The function of any existing op code, pseudo op, or text nacro
should not be redefined. PP channel instructions are an
exception. Qher exceptions nmay be allowed only if they do not
significantly alter the external original process and your project
| eader approves in advance .

Wthin the macro definition, parameter names nust be used
explicitly. ";A" type of paraneter references nust not be used.

Macros, as a general rule, should only use registers naned as
parameters (unless they call routi nes). However, it is
pernmi ssible at the beginning of the routine to declare a register
"off linmts" and then use it within the macros. WARNING CPMACTX
operations will frequently use X5 as a scratch register if no
scratch register is specified.

5.8 MACRO usage

59

Modifiers of code nust, at least, follow the existing code's use of
nacr os. That is, if the original code uses a macro, then you shoul d
foll ow that usage.

If you notice a repeated sequence that woul d be inproved by a nacro, then
a new nacro can be defined and used. In general, you should alter every
occurrence of that sequence to use the new nacro. However,
considerations such as check out tine, the extent of the original
nodi fication, etc. nay alter this decision.

CDC Central Processor Coding
Wien witing in GOWASS for the CPU these guidelines should be foll owed:
1. Wen the CPMAC Wser's Qiide is available, then the structured
programm ng macros, entry/exit nmacros, description nacros, etc.
should be used. EXCEPTION The WHEN DONE, LOOP/ REPEAT, etc.
bl ocks shoul d not span too nmany |ines of code.

2. Unless there is a clear, conpelling reason all subroutines rust "be

entered with a return junp and exited through the entry. The
technique of wusing a B register to hold the return address and
leaving the subroutine by a "JP Bn", for exanple, must not be
done.

3. The use of multiple entry subroutines nust be cl osely exam ned and
clearly justified. Since this leads to many confusing
conpl exities (nmost of which are prohibited), it rarely can be
correctly used.

Codi ng Quidelines - STRAP #9. 4

Page 32

If it is better to reference a location by using the contents of

another register, you nmust still include a cross reference entry.
Wsual |y you can avoid this by using the "=reg" pseudo operation.
You need only one reference for all code in the inmediate
vicinity.

The naming of registers in CP code nust be avoi ded since it
frequently confuses the person nodifying or debuggi ng the code.

There may be exceptions to this prohibition, but they wll be
handl ed on a case-by-case basi s.

The instruction nmust always appear by itself in the operation
field, the unpack and normalize instructions are the only
exceptions since two registers receive data. For exanpl e:

NZ, X1 ALPHA
PX6, B7 X5

are not permtted but

Uxs, B7 X6
NX1, B7 X6

are al | owned.

Entry points to subroutines should be such that an i mredi ate error
is given when the entry point is junped to without an RJ having
been done. This error rmust show where the problemoccurs. This
can be acconplished by a PS, a "BSSZ 1", or a "JP 400000B+*".
This does not apply to routines that have no node error processing
available. (IRP for exanple.)

The "PS" instruction would seemto be the nost wuseful since it
will reset the sub-sub title.

The explicit use of BO should not be done when there exists an
alternative instruction that reads better. However, you nust use
BO when it is necessary for a conpl ete conparison statenent. For
exanple: "NZ B3,JM" should be used instead of "NE B3, BO, JIMP'.
However, "GT B3, BO LOOP' nust be used instead of "GI B3, LOOP', and
"LE B3,BOEXIT" nust be used instead of "LE B3,EXIT*. [If the
programis to junp when B5 is plus, then use "PL B5, JMP"; however,
if you are coding a loop that |oops through a table from"n"
t hrough zero, then "CGE B5, BO, JMP" shoul d be used.

Cf course, in nost cases, this entire problemcan be avioded thru
the use of the JUW, WHEN, REPEAT, etc. nmacros.

Codi ng Quidelines - STRAP #9.4
Page 33

9. B should be used to hold a constant one if this is desired. Some
ol der progranms use B7; this practice nust not be continued to new
programs. |f you nake snmall nodifications to prograns that have
another convention, then, of course, you should follow that
convention. The Fortran 5 library appears to frequently use B5 =
1.

10. Al subroutines nust use the "UREG', "RREG', "EREG' and "CALLS'
macros in the subroutine preanble if these macros are avail abl e.
These nmacros will be available when the CPMAC Wser's Qiide is
avai |l abl e. This will allow nmachine verification of some parts of
the | i nkage. :

11. The "LOK' and "UNLOK' pseudo ops nust be wused to protect
constant registers over a stretch of code. The interval before
which protection is required varies by the register types. B
registers are traditionally considered constant for a much | onger
period than Aregisters. |If an Aregister is to be constant but
its associated X register is not, then the A register should be
| ocked even over short ranges. This becomes even nore inportant
if the Aregister was loaded "invisibly" through a nacro. The
purpose of locking registers is to prevent a quick change being
installed that uses a register that it shouldn't.

5.10 (CDC Peripheral Processor Coding
5.10.1 Direct storage usage

The direct storage |ocations between zero and 17 octal (D ZO thru
D.T7) are wused for tenporary storage. This means that you nust
not expect their contents to be preserved over several levels of
nodul es. This also means that if you are using a word in the
tenporary direct cells for a word count to read or wite central
nmenory, Yyou nust set that word as close to the actual read or
wite instruction as possible. For exanpl e:

i ncorrect correct
SETK LE. FNT, D. Z3
. (Code altering FNT) .
meEM' o, FNT, D. Z3 35$EM) = ETNTI,DD.Z§3

This will help prevent disasterous bugs when soneone alters a
tenporary and does not notice its later use.

In the PP barnyard, while all these words are tenporary sone are
nore tenporary than others. DZO is the nost tenporary, D TO
through D.T4 are the next nost tenporary (their contents must not
be considered preserved over any PP resident request except a

Codi ng CGuidelines - STRAP #9.4

Page 34

call to R.TFL), then cones D.Z1 through D.zZ5 and finally the
remai nder. The nore tenporary the word, the shorter the distance
you can consider it preserved w thout extensive coments. (Not e
that a deadstart destroys D. ZO through D. Z5).

Note that D.ZO nust not be used as the word count in a CM
read/ wite instruction. That is, although "CMW BUFF, D. ZO" wil |
work, it nust not be used

The tenporary direct cells nust not be renaned. In some existing
PP code D TO is renaned CMand is used to read the contents of
central nmenory. This practice nmust not be continued to new PP
progr ans.

If any of the constant direct cells (such as D.PPONE, D. TR, etc)
are used in the program they nust be initialized at the start of
the programand |eft constant throughout. This wll prevent a
nodi fi cation naking use of the cell before it has been set (this
can create a very difficult bug).

The non-tenporary direct cells nust be renamed to indicate their

use. There should normally be only one use in the program
However, for separate functions or states it is permissible to
reuse a direct cell. The QUAL pseudo op should be used to

prevent m suse.

VWen nanming direct cells, all direct cells wused (explicitly or
inmplicitly) must be declared. This declaration nust appear in
one place and be visible to the person reading the listing. The
declaration nust be processed by COWASS so that an error is
generated if the allocation is done incorrectly. This style nust
be foll owed:

CRG D T™W

D. FNT BSS LE. FNT*5 has entire FNT
BSS D. PPl RB-* free space

D. PPI RB BSS 5

D. RA BSS 1

D. FL BSS 1

D. ESTFWA BSS 1 has FWA of EST

D.CPNUM BSS 1 has contro

poi nt nunber

BSS D. PPONE- * free space

D. PPONE BSS 1

BSS D PPIR*

D. PPIR BSS 1
D. PPCR BSS 1
D.PPMEST BSS 1

Note that there is only one ORG Additional ORGs are pernitted
only if you intentionally plan to overwite.

Codi ng Quidelines - STRAP #9.4
Page 35

If multiple nanes for the sane direct cell are used, it nust be
clear howthe cells were set. For exanpl e:

at the beginning of the listing:

D. FNT BSS)
D FST BSS 5

FSTFT1 EQ D. FST+C. FXYZ
Then somewhere in the program
CRD D FST
and sonewhat |ater occurs:
JUWP EMPTY, FSTFT1, ZR

This will require breaking the line of thought to pursue thru the
cross reference map exactly how and when FSTFT1 was set.
Debuggi ng and crash anal ysis becomes nmuch nore difficult because
you have to renenber extraneous details. The preferred sequence
woul d be to sinply use:

JUWP EMPTY, FLD(D. FST+C. FXYZ, FXYZ) , ZR

5.10.2 Ceneral practice

In PP code it is sonetines necessary to alter the assenbled
i nstructi ons. Wien this is done, care nust be taken to insure
that it is obvious that this is occurring and what instruction
will appear. Frequently, for exanple, a constant is stored into
an LDC instruction. Wen this is done, the followi ng sequence
nust be used: :

NVE LDC ** has relative location of FET
NVEF L EQU NVE+1

or if several known sequences are possible

RWO OAM ** CH read/ wite disk
* |AM BUFI,CH FCR READI NG
* OAM BUFO, CH FOR WR TI NG

That is, if known, the instruction that night be placed there
nust be noted in the conments.

Wien accessing a central program field length, the absolute
address can only be obtained just prior to the access. The
absol ute address nust never be stored. The ADDRA or LDCA34
nmacros must be used to conpute the absolute address; the error
return nust al ways be checked—even if it could "never" happen.

Codi ng Quidelines - STRAP #9. 4

Page 36

Wien witing multiple OMwords, remenber it is possible to be
locked out of CMfor a long time after the first word is witten
due to ECS transfers. Consequently, do not set requests until
you are sure all of the parameters have been set. For exanple, a
PP communicating to a CP programneeds to wite two words in
central menory. The first word initiates the request, the second
gives some vital parameters. Wile it would be tenpting to do a
CM wite with a word count of two, this will not always work
since the paraneters may be set long after the request is nade.

Al PP s nmust have a test to prevent their grow ng too big. The
CKPPLWA nacro must be used to test for PP s loading within a
fixed area (e.g. below 7777) since it rounds the overlay I|ength
up to amultiple of 5 words.

Not only should the end of the PP be tested, but also any parts
of the PP that cannot be overwitten by an overlay it calls. Any
PP routine that is nodified which does not already contain this
test nust have the test included as part of the nodification.

Some existing PP prograns first test whether one of its overlays
is already loaded and do not reload it before junping to it if
this is true. This is a highly dangerous practice. It has
happened in the past that the test was not thorough enough and
the PP junped into garbage. GConsequently, you nust be very sure
that this technique will save significant time and that there is
no way to design the functions To avoid this problem

No code shoul d assume P.ZERO has a value of zero. P.ZERO used to
have value of zero; it no longer does. GCentral nenory | ocation
absolute zero is no longer expected to contain zero. Certain
machine errors will cause the hardware to place error codes into
| ocation zero.

Al PP prograns should begin with the STARTPP macro as the first
or second instruction executed (the first instruction nmay be a
junp to the initializing code). STARTPP will request OM access;
this should be termnated as rapidly as possible.

The "no-op" feature of the I/O instructions nust not be used
except for the "DON' instruction and, if the guide lines in
section 8 are precisely followed, the AN OX instructions. This
feature nust never be used for the FAN, FNC instructions since a
critical function may not be done.

A DPP or ABCRT nmonitor request is nmade to termnate the PP
program all interlocks nust have been released before these
requests. Wsually there should not be any code between one of
t hese requests and the LIMR | DLE

6.0

Codi ng Quidelines - STRAP #9.4
Page 37

5.10.3 New or significantly altered PP routines.

Wien a new PP routine is added to the system (or an old PP
routine's function is significantly altered), there must be an
entry added (or altered) to the /PPO/ text. This entry will give
the PP name and its function. The standards noted in the deck
will be foll owed.

5.10.4 PP Macro Usage

The PP macros defined in the text should be wused whenever

. appropriate (unless they have been declared obsolete). For
exanpl e: the LDK macro nust be used when loading a text synbol
since its value may change (also, using LDK is encouraged because
it denotes a constant; not infrequently do people mstakenly
wite LDN when they nean LDD and conversely).

The MOVE macro should norrmally be used only to nove data. The
optional instruction should be avoided - It nust not be a fl ow
changi ng instruction.

The ADDRA, LDCA34 nacros should normally specify the error
address and allow non-error conditions to flow to the next
i nstructi on.

Backward branches should insure that the proper junp (relative or
long) wll be calculated; forward branches nust use whatever
takes the |east nenory.

The macros defined in the PPMAC WUsers Qui de should be used unl ess
clarity is lost. O course, those macros decl ared obsol ete nust
not be used in new code.

| NTERDATA codi ng

Sone additional rules are needed for coding Interdata machines using COWPASS
and FETEXT. These rules arise for a variety of reasons: undocunented hardware
quirks, limtations of FETEXT and the | oader, and problens that that we have
experi enced.

6.1 Mechanics

Interdata code may be absolute or relocatable. The formats for COWPASS
IDENT's are as fol |l ows:

Codi ng Quidelines - STRAP #9. 4
Page 38
Absol ut e assenbl i es::
| DENT nane

ABS
FEPROG f wa, 1wa, xf er add

constant definitions

xferadd
execut abl e code

END

The ORGto fwa, and definition of the transfer address, are
done by FEPROG
Rel ocat abl e assenbl i es

| DENT nane
FEPROG

ENTRY xf er add
EXT external s

constant definitions

xferadd
execut abl e code

END xf er add
The transfer address is optional.
6.2 Ceneral restrictions
FETEXT and the |oader place sone additional constraints on the code:
No relocatable |IDENT nay be greater than or equal to 8000 4bytes

since when the RX2 (relative addressing instruction format) is
used, the address field nay be exceeded.

Codi ng Quidelines - STRAP #9.4
Page 39

. UWnlabeled RMI may not be wused to generate code in relocatable
assenblies, since FEPROG uses it to round the IDENT to a nultiple
of 8 bytes long. Labeled RMI is not restricted.

. Labeled common may be used, but the programmer must ensure that
each block is an exact nmultiple of 8 bytes |ong. Names nust be
less than seven characters long. There are no constraints on the
use of bl ank conmon.

. Local USE blocks may be used, but nust be padded to a multiple of
eight bytes, or assenbly errors will result. Nanes of USE bl ocks
may not exceed six characters.

. Absol ute val ues nust be defined before their first use. |If thisis
not done, unworkable code may result, wthout assenbly errors.
External val ues must either be defined before first use via the EXT
pseudo-op, or nay be prefixed by the "=X' nodifier on each use.

6.3 Alignment problens

The ALIGN macro does BSSes until the origin counter falls on a 2-, 4- or
8-byte boundary. It is called by the .. and macros, as well as
data definition macros such as HAMORD, WORD, and BLOCK The follow ng
code will not work :

LABEL ..
WRD 1234
WXRD 5678
The .. macro will align to a 2-byte boundary, and the WRD nmacro wll
align to four. Thus "LABEL" may not be the address of the first word.
The macro should be used instead with full word tables.

Here is some nore bad code:

BR TAG
CELL BYTE 23

TAG LDB Rl, CELL

Since the instruction macros do not do any alignment, TAGw Il be on an
odd boundary, and the machine wll crash with an illegal instruction
interrupt when the LDB is executed.

Codi ng Qui delines - STRAP #9.4

Page 40

6.4

6.5

Any block of code following data definitions nmust begin with a .. or
nmacro call:

CELL BYTE 23
TAG .
LDB Rl, CELL

Problens of this type may be avoi ded by always using the ".." nacro in
conjunction wth labels — labels should never be put in the |ocation
field of instructions. Note that the use of the ".." nacro also aids

future nodi fication.
Loadi ng hal f wor ds

Onh the 7/32, the LDH instruction extends the sign of the operand through
the upper half of the register. Therefore it should be used only on

signed values. LDH. nust be used in other cases. Al though in nost
general cases LDH would work fine, using LDH for only signed values is an
excellent habit to get into —it can save nuch troubl e.

Logi cal and arithnetic conpares

The use of explicit CGW, COWL, etc. instructions is not allowed. The
WEN CRVEN CRELSE/DONE or JUWP or LOCP/ WH LE/ REPEAT nacros shoul d be
used instead, for readability and terseness. ne should beware of the
f oll owi ng, however:
A careful reading of the 32-Bit Series Reference Manual will reveal
that the Ow, CWH and OWI instructions do not set the condition
code the sane way that GwL, COwLH CMWPLI, and OWLB do.

This means that if you use the |ogical conpares (which are faster,
and CWPLB has no alternative), you nust avoid a follow ng BGI, BLT,
BLE, BGE, BN\M BM BP, or BNP. These junps wll work rationally
after CGw, OWHor CWPl, but they are unpredictable after a | ogical

conpar e.
The junps to use after a logical conpare are:
BEQ branch if A ,EQ B
BNE branch if A .NE. B
BL branch if A .LT. B
BNL branch if A.GE B

6.6 BXH and BXLE

The index branching instructions do not work as you mght think when the
signs of the index and linmt are different. For instance:

If RR=l, R=I, and R3=-1, BXHon R will not branch, even though R
.GI. R3.

6.7

Coding Quidelines - STRAP #9.4
Page 41

If RR=-2, R=l, and R3=I, BXLEon R wll not branch, even though R
.LT. R3.

Both of these instructions work correctly (algebraically) only when the
signs of index and limt agree , whether positive or negative.

Note that the BXLELOOP/ ENDBXLE nacros should generally be used in lieu of
explicit BXLE instruction |oops. There nmay be times when the BXH
instruction is necessary, or when "tricky" coding is being done (such as
nodi fyi ng the BXLE paraneters explicitly), but these are generally shakey
and are to be avoi ded.

Regi ster Conventi ons

The 7/32 has two register sets: set 0 is wused in interrupt service
routines (ISRs) and SVC (supervisor call) routines; set F is used by
background tasks. Because of this separation, and because tasks only run
end-to-end, a task need not preserve any registers. However, there are
problens that arise because of subroutines that are callable by both
ISR's and tasks, and because of ISRs calling SVC routines.

6.7.1 RO and R

In an ISR these registers contain the old PSW-destroy them and
you can't return to the task that was interrupted. (The sane
applies to RE and RF in SVC routines and certain ISR s.)

6.7.2 ISRs and S\VC s

Wien an ISR nakes a SVC request (such as REQTASK), sone of its
registers wll be destroyed. SVC routines nust be guaranteed to
preserve RO through R4, at |east. ISRs should generally save
their REQIASKs for the very end, when register contents are no
| onger needed. :

6.7.3 Subroutine Paranmeter Registers

Wiere possible, try to use R5-R8 or RO for passing paraneters to
subrouti nes. This is true for tasks in FREND, and is useful when
the subroutine call goes only one level deep. Wth nested
subroutine calls, this rule can be abandoned.

6.7.4 Scratch Registers
Since a task needs to preserve no registers, it can use all for

scratch. Subroutines should use RA-RF (with caution about RC) for
scratch, and others only if necessary—R9 first, then R8, etc.

Codi ng Quidelines - STRAP #9.4

Page 42

6.7.5 RC Probl ens

RCis universally used to hold the return address during a

subroutine call. To allownested subroutine calls, the SUBR nacro
stores RC at the front of the subroutine, and the RETURN nacro
reloads it.

It is niceto be able to exit a subroutine by doing a conditional
branch to the contents of RC. This may be done, but only in short
& sinple subroutines, and only with a warning in the subroutine
comments that RC nust be preserved.

RC may be used as a scratch regi ster, but only with a warning to
do no branches to RC.

It is best to avoid references to RC except through the SUBR
RETURN, and CALL nacr os.

Since the SUBR nmacro defines only one cell to save RC in, any
subroutine which is called by both tasks and I1SRs may exit only
by branching to RC—+the RETURN nacro nmust not be used. An
alternative is being devel oped.

6.8 Disabling Interrupts

Cells which are nodified by both tasks and ISR's nust be interlocked. We
do this by disabling interrupts tenporarily in the task, using the
DI SABI NT and ENABI NT nacros. Sone cautions about this nust be observed:

- DI SABINT should generally only be used in tasks. Note that this
nmacro becones a no-op if interrupts are already disabled (it sinply
saves the old PSW clears the inmediate interrupt and system queue
bits, and then ENABINT restores the old PSW, so it may be used in
subroutines called from both tasks and |SRs, but this use is
confusi ng and shoul d be avoi ded. .

- Interrupts nust be disabled only for the nininmumperiod of time.
If two cells are nodified in quick succession, it mght be good to
re-enabl e interrupts between steps.

- For good interlock nmanagenent, try to keep code between D SABINT
and ENABINT calls short, and straight-line. |If a test nust be
nmade, do it after the ENABINT. Never branch into or out of a range
where interrupts are disabl ed.

Coding Quidelines - STRAP #9.4
Page 43

7.0 FEIN Coding Standards

Al

new prograns nust be witten in FTN5; any FTN4 program that is nodified

(except for ninor changes) must be converted to FTNG.

7.1

7.2

7.3

7.4

Standard conform ng

FTN6 prograns should conform to the standard whenever possi bl e.
Nonstandard functions are prefered over nonstandard statements. This
nmeans, for exanple, that the AND and CR functions should be used instead
of the ".AND." and ".CR" bit operators.

| ndent ati on
The structure of the FTN6 programnust be shown by indentation. Two
colums should be used to indicate each level. S nce FTNb does not

automatically list the programwith this indentation, your source code
nust show it. Futhernore, any nodification that alters the |evels nust
i ncl ude changes to correctly show the new structure.

Statenents within the range of a DO statenent shoul d be indented.

The ENDIF, ELSE, and ELSH F staterments are indented at the sane |level as
their associated IF statement. It is also usually beneficial to place a
comrent after an ELSE or ELSEIF statenent explaining nore precisely what
is being tested.

Comments shoul d be indented beyond the code in which they appear. That
is, comments should not alter the visual presentation of the structure.

In general, the visual presentation of the structure is very inportant.
Not hing should interfere with this presentation.

Synbol s

Just as in Conpass, synbols nust be used when possible. This means that
PARAMETER statenents should be used for array sizes, character constants,
etc.

DO | oops

The "extended range" feature of DO | oops nust not be used. That is, no
DO | oops should exit in the nddl e and then return.

Any DO loop that expects to be termnated by sone condition other than
exhausting the | oop count nmust still include code to handl e the case when
the loop exits by exceeding the |oop count.

The DO statenent should be of the form"DO slab, v=el(e2[,e3]". That is,
there should be a comma after the statenent nunber.

Codi ng Quidelines - STRAP #9.4

Page 44

7.5

7.6

7.7

7.8

7.9

The statenent nunber that termnates the DO statenent should be on a
QONTI NUE st at enent . The COONTINUE statenent should be indented to the
sanme | evel as the DO statenent.

|F statements
The three branch |F statenent shoul d not be used.

The CASE statenent should be mapped into the |F ELSE F ELSH F ELSE
st at enent s.

QOTO statements

Q01O statenents should be used sparingly. Refer to the general comrents
on program structure. QOTO staterments should usually be used to code
structured programm ng constructs not available in FTN5. For exanpl e,
the QOTO statenent can be used to EXIT a | oop.

Intrinsic Functions

The generic name of the intrinsic function should be wused whenever
possbl e. For exanple, use MAX for the maxi numfunction instead of MAXQ
AVAX1, or DIVAXI.

D agnosti cs

Al informative diagnostics must be elimnated whenever possi bl e.
However , clarity is much preferred over elimnating infornative
di agnostics. For exanple, it may be possible to avoid an infornative
di agnostics by changing a constant froma Hollerith constant to an octal
constant, but to make this change would make the code nore obscure;
therefore, it should not be done.

There should be no stray or unused vari abl es.

As with COOWASS code, even unrelated nodifications must clean up
i nfornative di agnosti cs.

Subr outi ne usage
The use of LQCOF subroutine nust be avoided. This usually indicates sone

design that is either too assenbly |anguage oriented or el se sone nodul e
that shoul d be done in COVPASS.

Codi ng Guidelines - STRAP #9.4
Page 45

8.0 Ceneral Practices

8.1

drop
CH.FTN

Fil e mani pul ation

The proper interlock procedures nust be strictly followed when creating,
accessing, or destroying a file.

The two maj or processes which nmust be interlocked are: 1) finding a free
FNT entry to put a file with a unique nanme, and 2) obtaining exclusive
access to a file so that you can manipulate it or destroy it. [tem two
has many variations in our operating system Discussed below are flow
charts for these problens as they pertain to files assigned to a non-zero
control point.

Creating a file:

If the file needs a unique name (file at a control point, for exanple), a
search for a duplicate nanme should be done after the channel is reserved
to prevent two PP's from generating the same file sinultaneously.

\
)__._ P get
C St a_rt CH.FNT

search FNT,
noting free
sl ots and

duplicate
files

drop
CH.FNT

duplicates

| ear conplete
bit of FNT to
insure file
i s busy

(’W“VVitenewF o> drop
FNT D’Op CH. FNT

Codi ng Gui del i nes - STRAP#9. 4
Page 46

Accessing a file:

To access a local file at a control point, follow the follow ng sequence:

<--- no error ---- (ppauseand
cﬁg k _error

| ocate FNT
any non-counted
i nteractive
process nust

l i nclude a pause
reserve) (drop) and error flag
CH. FST CH. FST check

Nno ’_

match---->

(to ternminate exclusive access, set the conplete bit).

8.2

Coding Quidelines - STRAP #9.4
Page 47

Destroying a fil e:

Before destroying a file (zeroing its FNT), be sure to get exclusive
access. If equipnent is assigned to that file, or an RBT chain is
present, be sure to deal with thembefore zeroing the file. Al so, zero
the FNT in the proper order: word three, word two, then word one (or word
two, word three, then word one). course, this process should not
depend on there being three words in the FNIT.

Sore prograns (1AJ, 1EJ, etc.) don't bother with CH FST, etc., as they
are (presumably) the only programwhich mght be attenpting to access the
file in question. Wile this schene does perhaps save tine, enploying it
deserves a (very) long, hard exam nati on.

Use of the no-op feature in the QAN I AN i nstructions

In addition to no-op DCN (DONPSN) the no-op (unhangable) feature of the
QANVIAN instructions (QANPSNIANPSN) can be used to avoid hangup
situations:

code like
FON
ACN
LDD
QAN
LDD
QAN
DCN

can hang if the equi pment doesn't accept the 1st byte output (2nd OMN
hangs on a full channel). A DON entered by the consol e operator doesn't
hel p because then the QAN is hung on an inactive channel. The channel
must be DON ACN by the operator to unhang the operation, and then the
program cannot detect what happened.

The above sequence al so hangs if the equipnent DCN s the channel betweer
the AON and QAN (AN s hang on an inactive channel, and it is unlikely
that an operator can distinguish a channel hung inactive from a channel
not bei ng used.

Codi ng Cuidelines - STRAP #9.4

Page 48

This problemhas two sol utions:
1) use OAM

FCN

ACN

LDK word count

OAM

DCN

NJN error (not all data taken)

This requires data properly formated in nenory.

2) use OANPSN

OANPSN
[JM error
DCN

Ei ther sequence allows operator to DCN a channel hung full, and will take
the error branch if it happens. Simlarily, if the channel is
deactivated by the equi pment, both sequences execute wi thout hanging and
branch to the error routine. The case for IANPSN is virtually identica
(except replace "full" with "enpty" and vice versa).

| ANPSN and QANPSN sequences nust be followed by a "IJMerror” to detect
the failure condition. Cbviously, this cannot be used if the equipment
deactivates the channel after data transfer (as happens on status
sequence for 7054):

FNC 0012B
ACN

| ANPSN

[JM error

This cannot be used since the equipment wll (legitimately) deactivate
the channel after the [ANPSN instruction. Therefore, the PP cannot
determine if the inactive channel is correct or if it occured because the
operator DCN d the channel.

FNC 0012B
ACN
LDN 1
| AM STAT
NIN error
(wait for channel to be inactive)

This is correct, as the controller will deactivate the channel after the
IAM If the operator had to DCN the channel, not all the data woul d have
been transfered and the non-zero A-register would have indicated this
situation.

8.3

8.4

8.5

8.6

8.7

Codi ng Quidelines - STRAP #9. 4
Page 49

Witing into ECS (or reading from ECS)

The ECS I/O process is described in 6SM71. It should be foll owed. Al
ECS access nust be relative to a given partition.

Channel s and Interl ocks

If possible, only one channel or other interlock should be held by a PP

PP or task at a tine (and it is usually possible). If it is necessary to
obtain two or nore interlocks simltaneously, the second and subsequent
interlocks nust be requested with refuseable requests. |If a request is

refused, ALL interlocks obtained to that point nust be rel eased, and the
process restarted with the first interlock request (nornally after a
short delay and a check of the error flag if appropriate).

Files

Scratch files should have four Zs as the first four characters in their
nane. Any program may use a scratch file wthout concern for its
previous contents. (Files with five Zs are reserved for use by CDC)

Connected input and output files are naned depending upon the character
set bei ng used:

char act er file nane
set: i_nput out put
DC 77771 N 7777QJ
AF 77771 A- 777 A
BF 7777\ BF 7777 CBF
AS 77771 AS Z7770AS
B Z777| Bl 7777(CBI

Al scratch files nmust be returned after execution.
Recovery

Any new features that inplement new tables or fields in OW or the
control point areas or add new file types, etc. nust consider the
questions of recovery after a crash, of rerunning a job, etc.

Menory usage

In nmost cases nenory is our nost valuable asset. Don't waste it.
Frequently, this means wusing several overlays, using I/O buffers for
set-up code, etc. However, reliability, readability, and flexibility
nust renain.

Codi ng Qui delines - STRAP #9.4
Page 50

9.0

8.8 Docunentation

Docurent ati on on nodifications is expected to come with or soon after the
code. This will nean updating the appropriate SMD or witing a new SMD.
See STRAP 4. An MI may al so be witten if you wish. If the SMD is not
in machine readable formand if the nodification neets the qualifications
of an M4, then only an Mi needs to be witten. See STRAP 11.

Sunmar y
These conventions and practices, intelligently applied, should result in
flexible, reliable code. Rapid initial developrment is rarely required -

following these guidelines is usually nore inportant.

WR TTEN BY: R chard R More

(with comments and suggestions fromthe entire systens group)

1Y g

2.0

3.0

M CH GAN STATE WN VERSI TY

COMPUTER LABCRATCRY

SYSTEMB TASKS, RESPONSI Bl LI TI ES, AND PROCEDURES

NUMBER 10.1

Software Stir Procedures

. January 22, 1978

| NTRODUCTI ON

Problenms with the MBU conputer operating systemare reported to the
Conputer Laboratory by use of a Systems Trouble Internal Report form
(aSTIR - Any of these STIRs which refer to software problens are
sent to the Systems Programmng Group (Systens). This docunent
descri bes the proceedures used internal to the Systens Goup to track
the progress of software STIRs.

SYSTEM'_PERSONNEL | NVALVED

Three people in Systens are involved with a STIR at any one tine.
These peopl e are:

The STIR MON TCR
The STIR MONNTCR S duties are to keep a record of the
progress of all STIRs, and to produce reports containing
this information. This person is aided in this task by the
STIR ASS| STANT.

The STIR _ASSI STANT
The STIR ASSI STANT' S duties are to handl e all the paperwork
and actual information recording which goes with the STIR
process. This person keeps books containing all the STIRs
that have been through systens. This person follows the
STIR MONITCR S directi on.

The ASSI G\EE
The ASSIGNEE is the person in the Systens G oup who will
actually do the work of isolating and correcting the
probl em This person has a | arge nunber of options as to
the action to be taken to correct the problem These are
described in section 3-

STITR FLOVWTH N SYSTENMS

This section describes in detail the paths a STIR may foll ow between
the tinme it is submtted to the Systens Goup and the tine that the
problemis corrected.

ETTTYE TR

PACE 2
Sifl

3.2

NEW STI RS

Al new STIRs go directly to the STIR MONITOR, who does the
frol | owi ng:

a) Establishes atitle, routine, category, priority, and
number .

b) Makes an initial assignment.

c) Backs up all needed files on magnetic tape.

d) Wites the Systens STIR nunber on all docunentation.

e) Attaches an acknow edgenent form

f) Routes the yellowcopy, all docunmentation, and the
acknowl edgenent formto the ASSI GNEE.

g) Routes the other copies to the STIR ASSI STANT for

| oggi ng.

The ASSI GNEE shoul d then anal yze the STIRwithin 5 days. This
action will result in a positive acknow edgement of the
disposition of the STIR It will be one of the follow ng:

a) User error. The STIRis returned to the STIR MONI TOR
wi th an expl anation.

b) COC bug. A PSRis witten and returned with the STIR

c) MU bug. The attached acknow edgenment formis detached
fromthe STIR and sent to the STIR MONITOR Any needed
changes in routine name, priority, and/or category may
be specified on this form

d) Inadeauate docunentation. In this case the STIR MONI TOR
wi Il request the person who submtted the STIR to
supply any needed materials. If the submttor cannot
or wll not supply what is needed, the STIRwII be
rejected.

If the STIR MONI TOR does not receive an acknow edgenent from the
ASSI GNEE within five days, the STIR MONI TCR shoul d take any
steps necessary to get an immedi ate acknow edgement. These
steps could include talking with the ASSI GNEE, reauesting
support fromthe ASSIGNEE S project |eader , requesting support
fromthe Systems supervisor, etc. -

CHANG NG STI R RECORDS

A number of the pieces of information that the STIR MONI TOR
records about a STIR may be changed to keep the record
up-to-date. These itens are:

a) Routine nane
b) Category
c) Priority
d) Description
e) Assignee

To change any of these items, the ASSI GNEE shoul d send the STIR
MONI TOR both the yellow copy and a note indicating the desired
change. The STIR MONNTOR will instruct the STIR ASSI STANT to
change the records and make the change on the white copy. The
STIR MONNTOR Wi I | mark the chanr «> on the yel |l ow copy and return
it to the ASSI GNEE.

e

PAE 3

Note that in the case of a re-assignment, the ASSIGNEE wi || now
be a diferent person, and the original ASSIGNEE will not receive
the yel | ow back.

3.3 ANSWRFD AND FIXED STIRS

If the STIR is to be replied to or rejected, the yellow copy is
returned to the STIR MONNTOR with a signed explanation witten
inthe "reply box. The STIRMNTORwWII| log the reply, and
send the STIR to the STIR ASSI STANT, who will send the reply to
the submttor.

If the STIR has been fixed by a nodification to the operating
systemor one of the dependent products, the yellow should be
returned to the STIR MONNTOR with the LSD and | DENT of the
modi fication noted in the '"reply’ box. Note that this shoul d
only be done after the nodification has been installed.

The STIR MONI TOR should nonitor the LSD docunents to be certain
that a yellow copy is received for each STIR listed as fixed

If the STIR has been fixed by a modification, but is still to be
PSR d to CDC, the LSD and IDENT of the modification should be
witten in the reply box, and then the STIR and PSR sent to the
STIR MONITOR. The user will be notified that the probl em has
been corrected, and the PSRw |l be sent to CDC

3.4 PSRS

A PSR (.Programmng . Systens Jgeport) is CDC s equivalent of a
STIR It is used to report problems with software which is
supported by CDC.

Wien a STIR is to be PSR d, the completed PSR form and all
docunentation, and the yellow copy, should be sent to the STIR
MONI TOR, who, with the STIR ASSI STANT, will handle all paperwork
involved in sending the PSR to CDC. ,

The documentation supplied to COC with the PSR shoul d display
the problemas clearly as possible. The program shoul d be
reduced to the mnimmwhich will produce the problem and the
error should be clearly pointed out. Note that it is a good idea
to mark the output to show exactly where the product is not
performng correctly.

The PSR docunmentation should include the follow ng where
appl i cabl e:

a) A punched card deck of a batch job which shows the
pr obl em

b) A permanent file containing this batch job. (An EWILE
Is preferred.)

c) Two copies of the output which shows the error. This
shoul d be the execution of the above batch job. One
copy will be sent to CDC s local representative and the
other will be filed by the STIR MONI TOR

d) The PSR form wth the problemclearly described.

1 OTHRTFLUT E
PACE 1

To send a PSR to CDC, the STIR MONNTOR verifies that the
supplied materials are sufficient to explain the problem Two
phot ocopi es of the PSR formare nade. The original PSR form
one photocopy of it, and one copy of the STIR docunentation are
sent to the STIR ASSI STANT. The STIR ASSI STANT | ogs the action,
sends the photocopy to CDC s local representative, and sends the
original PSR formand the docunentation to CDC s office in
Sunnyvale. The STIR MONNTCR files the follow ng itens:

a) The yellow copy of the STIR

b) The second photocopy of the PSR form (attached to the
yel l ow copy).

c) The original docunentation.

d) A copy of the docunentation sent to CDC (unless
identical to[C]).

e) Copies of any permanent files submtted (on tape).

(CDC does not return PSR docunentation. Al of this filing wll
enable the problemto be resubmtted to CDC or worked on locally
I f necessary.)

If the STIRis to be fixed locally in addition to the PSR, this
shoul d be noted in the 'reply' box. The STIR MONNTOR wi || then
return the yellow to the ASSIGNEE. This STIR shoul d be sent
back to the STIR MONITOR when the local fix is installed.

The STIR MONNTOR wi || track the progress of all outstanding
PSR's. This is done by scanning the PSR SUMARI ES sent from
CDC. Al action by CDC regarding a PSR is recorded on the
yel I ow copy (in the STIR MONNTOR S file) and in the STIRLOG
Wen a PSR is closed by CDC (whether rejected or fixed) the STIR
MONNTOR wi I | retreive all the original docunentation fromthe
files, re-attach it to the yellowcopy, and return the STIR to
the original ASSIGNEE with a note of the disposition by CDC

The person receiving the returned STIR PSR shoul d take one of
the follow ng actions:

a) If CDC has fixed the problem either by issuing
corrective code or by reporting that the problem
cannot be reproduced at a higher level, hold the STIR
until the fix is installed. The STIR is then handl ed
like any fixed STIR

b) If CDC has refused to fix the problem and we have fixed
it locally, the STIR may inmediately be replied to as
fixed.

c) If CDC has refused to fix the problem and we will not
be fixing it locally, the STIR should be replied to as
"NOT TO BE CORRECTED .

PSR s which CDC coul d not reproduce should al ways be retested.

If the problemstill occurs after the product is brought up to
the level at which CDC tested it, the STIR should be treated as
an MU probl em

Any PSR for which the reply fromCDC is inconplete or
unaccept abl e should be resubmtted to CDC. Additional
docunentation should be incl >d to clearly show why CDC s

T — LT

