
STRAP INDEX

STRAP 1.2 Back up procedures (for 6500) 06/07/84

STRAP 2.3 Installation of CDC Products and PSR Code 06/17/82

STRAP 3.5 Installation of Michigan State University 06/07/84
Modifications

STRAP 4.2 Writing Software Modification Documents 06/04/84

STRAP 5.2 Procedures for Efficient Maintenance of 06/05/84
the Systems Group tape library

STRAP 6.2 Software Modification Proposal Document 06/08/84

STRAP 7.4 Monthly Reports - Content and Style 06/07/84

STRAP 8

STRAP 9.4 Coding Practices and Conventions 06/08/84

STRAP 10.2 Software STIR Procedures 01/22/78

STRAP 11.2 MINI MOD Memos 06/04/84

STRAP 12.4 Disk Labeling and Flawing 06/07/84

STRAP 13.2 What to do when there is a Hardware Failure 06/07/84

STRAP 14.3 Protection of Disk Packs 06/06/84

STRAP 15.1 Guidelines for Proper Machine Room Conduct 06/07/84

Michigan State University

Computer Laboratory

System's Tasks, Responsibilities and Procedures

Number 1.2

Code Back Up Procedure

June 7, 1984

Definitions:

Program library tape (PL). A tape, that when processed by the UPDATE program,
generates the source for a set of programs. Also referred to as old program
library or OLDPL. There are generally multiple files on each tape. Each is
an UPDATE file for a collection of related programs.

Deadstart tape (DS). A tape that can be loaded into the machine and used to
execute programs.

Latest System Description (LSD). This is a notice used to transfer a DS tape
from Systems Programming to Operations. All LSD's are numbered, nn.mm where
nn is the major LSD number and mm is the minor LSD number. See STRAP 3 for
more details.

Correction Deck Library (CDL). This tape contains a file for each PL used at
MSU. Each file is UPDATE type data with the master control character changed
from "*" to "$". Each correction ident on a PL has an identically named deck
on the corresponding CDL. Thus, if one desires a copy of the cards for ident
JSF1SJ3, the procedure is to get the appropriate CDL (use GETPL with the CDL
parameter, i.e. GETPL,SCOPE,CDL.), do an UPDATE (Q,*=$$$$,R=C) with an input
card of $COMPILE JSF1SJ3.

NOTE: Idents that are purged from the PL are also purged from the CDL.

I. On-site backup

These tapes will be stored in the systems programming tape library.

A. A cycle of at least 10 DS tapes are maintained. The description
of the tape, when it is given to production, will specify the
current DS tape.

B. A cycle of 4 tapes is kept for each PL tape. This contains the
last version of the tape for each of the last 2 major LSDs, the
PL tape of the most recent minor LSD, and the current PL tape.

C. The CDL tape is backed up along with the PL tapes, but a cycle of
10 tapes is maintained.

Copyright, 1984, Michigan State University Board of Trustees

Code Back Up Procedure - STRAP #1.2
Page 2

II. Off-site backup

There are two purposes for the off-site backup:

A. To get operations up and going after a "disaster." The deadstart
tape will accomplish this.

B. To get the systems group up and going after a "disaster." The
PL, CDL, and PFDUMP tapes will accomplish this.

The procedure for taking backup tapes to off-site storage is quite
straightforward with few problems or inconsistencies associated with
it. This procedure should be done at the beginning of each calendar
month, usually within the first five working days.

A. Insure that the most recent LSD has been tied off. This can be
done by entering STAT from any Systems account. If all jobs have
been completed successfully, then the backup procedure can be
started.

B. Login to SIN or SYSGEN on problem number 016115.

C. Enter: START,BACKUP. & START,TESTPL. Each entry will
initiate a batch job. If you are not using the ID SYSGEN, a
warning message will come up. If you want the jobs to run
anyway, enter "YES" when prompted.

BACKUP copies the current PL and CDL tapes to the backup tapes.
TESTPL runs UPDATE on the current PL tape set to insure that each
can be read and updated. The BACKUP job will write onto the
tapes DEAD, SCOPEM, BASICEP, DARFAR, AMACRO, MOSSS, SCPPLS, CDL,
VIMPFS, and VIMDOC.

D. When these two jobs have been completed successfully then the
Monthly AF dump needs to be run. The person initiating the
backup procedure must make a request to Operations in order for
this to be done. The operator will dump the authorf file to the
AFMONTHLY tape.

Note: the UPHALx and UPAxxx tapes are not written by Systems. It
is merely our responsibility to take these tapes to the vault.
UPHALx tapes are maintained by User Services. UPAxxx tapes are
assigned to individual users, who have responsibility for the
contents of their own tapes. (Currently, use of the user
off-site backup service is very low. Soon Operations will have
their own off-site vault and will do the transporting of the
UPAxxx tapes.)

E. When this step is completed then the backup tapes can be taken to
off-site storage. Currently the tapes are taken to the safety
deposit vault in the Michigan National Bank tower in downtown
Lansing.

1.
2.
3.
4.
5.
6.
7.
8.
9.

DEAD
SCOPEM
BASICEP
DARFAR
AMACRO
MOSSS
SCPPLS
CDL
VIMPFS

Code Back Up Procedure - STRAP #1.2
Page 3

There are currently fourteen tapes to be taken to off-site
storage. At the present time, most of the tapes are located at
the lower left corner of tall tape rack immediately to the left
of the 750 operator's console in the machine room. Tapes with
the VRNs specified below are to be taken to off-site storage:

Deadstart tape
PL tape
PL tape
PL tape
PL tape
PL tape
PL tape
Correction Deck PL tape
This PFDUMP tape contains numerous permanent
files:

a) The SIN and SYS Hal libraries, and the main HAL
library.

b) The SYSTEMS, SIN, A.F. Utility, and DUMPTAP
libraries.

c) The versions of FREND on permanent files.
d) Files containing information about the SIN listing

tapes.
e) Various files needed for systems generation.

10. UPHAL1 - UIC HAL files
11. UPHAL2 - UIC HAL files
12. UPA100 - User files for off-site backup
13. VIMDOC - Systems documentation PFDUMP tape
14. AFMONTHLY - AF dump tape

It should be noted that each tape has a duplicate tape in the
vault. The two sets of tapes are labelled "Set 1" and "Set 2".
At any time, one set is in the machine room and one set is in the
vault.

WRITTEN BY: Glen J. Kime and Michael H. Giddings

APPROVED BY: Richard R. Moore

MICHIGAN STATE UNIVERSTIY

COMPUTER LABORATORY

SYSTEMS TASKS, RESPONSIBILITIES AND PROCEDURES

No. 2.2

May 16, 1979

Installation of CDC Products and PSR Code

Introduction

This STRAP describes the various procedures which may be used to install CDC code
into the MSU operating system. The emphasis here is on the system installation
procedures; however, these procedures should be reviewed while working on such a
project.

Installing a New Product or Program Library

The following procedure is used to install a new CDC product or program library.
If the new product is just a new version of an existing product, you may want to
treat it as an update to the current product, since the existing installation
deck and MSU modifications may be relevant.

Step 1. Obtain the CDC PL from the Systems Integrator. This tape will be a
copy of the latest CDC PL tape released by CDC, and will be on a VIM
tape.

Step 2. Generate the installation procedure for the product. See the
Installation Handbook to obtain important information about the product
installation and to find the location of the current CDC installation
sequence.

Step 3. Generate the new product, making any changes needed to the code and
installation producedure and test the product.

Step 4. Send the necessary information to the Systems Integrator (via code
review). This includes:

1. The CDC PL name or VIM tape number (from Step 1 above).
2. The modifications made to the PL (see STRAP 3).
3. The installation procedure used. A listing of the control cards

used is sufficient. This listing should make the following clear:
What texts are used, and where (what PL) they come from, if
not from the existing system.
What compilers or other utilities are needed from other PL's.
What texts, binaries, libraries, etc., are created for use by
other PL's.

STRAP No. 2.2
Page 2

What binaries go onto the system, and, on what libraries.

Updating An Existing CDC PL To a Higher PSR Level

When installing a new level of CDC code, it is important to check for conflicts,
duplication, etc., between new CDC code and existing MSU modifications to the
program library. In particular, look for "overlapping corrections" indicated by
UPDATE, and for resequencing or restructuring of the program library or product.

The procedure for updating a CDC PL to the highest PSR level is similar to that
for a new PL, with a couple possible exceptions. First, the installation
procedure listing is not needed if there are rio. changes. See the "Installation
Procedure" section for details on finding the current MSU installation procedure
deck. Second, the existing MSU modifications to the product need to be handled.
There are two primary methods for doing this, which are detailed below. The
choice of methods must be made clear on the gift certificate accompanying
installation.

Method 1: This method can be used if there are few existing modifications for
the program library, or if major changes are needed to the existing
modifications. This is the simpler method.

Step 1. Retrieve the current modifications from the correction deck
library. The following control cards will accomplish this:

GETPL,plname,CDL.
UPDATE,F,*=$$$$.
(modifications remain on COMPILE file)

Step 2. Place the CDL modifications in an EDITOR work file, and revise the
modifications as necessary. This may include deleting entire
modifications or rewriting others. If a substantial portion of a
modification is rewritten, the ident card and correction history
should reflect the name of the person revising the modification.
Any "*/" LSD comment cards other than "*/ D" cards should normally
be removed, since the modifications are just being reinstalled.

At this point, the modifications are treated just as any new
modifications would be. If you desire that some or all of these
modifications not be subject to code review, and you have made no
changes to them, mark that clearly on the listing submitted for
code review.

Method 2: This method is used only if there are a large number of existing
modifications and they do not require major changes. It is not as simple to set
up, but reduces the number of modifications shown in the LSD, and reduces the
size of the UPIC listing sent to code review. The existing modifications still
need to be checked for duplicates, conflicts, etc.

Step 1. Retrieve the CDL modifications and apply them to the CDC PL,
generating a new "working" program library. If this is
accomplished with no UPDATE errors, proceed to step 3.

STRAP No. 2.2
Page 3

Step 2. If there were UPDATE errors in attempting to apply the CDL
modifications against the CDC PL, such as references to
non-existent decks or idents, it is necessary to modify the CDL
modifications before the second UPDATE. These modifications should
be the minimum necessary to successfully generate a "working" PL.
Remember that the control character for the CDL PL is "$". If a
modification has many UPDATE errors, it is best to just purge it
and reinstall it as a new modification.

When preparing the product for code review, the UPDATE output from
this first UPDATE must be included. Also indicate what permanent
file and line range contains these modifications.

Step 3. Using the "working" PL as the base PL, generate any new
modifications that are needed. This is where changes should be
made such as correcting problems with CDL modifications which did
not produce UPDATE errors, but do not produce the desired result.
If a modification is outdated or needs substantial rewriting, it
should be purged here, unless it had to be purged in step 2.

A sample deck structure is shown below to show how to use this procedure.

Job 1 - create "working" PL.

GETPL,plname,CDL.
UPDATE,F,*=$$$$,C=MODS.
RETURN,OLDPL.
REQUEST,OLDPL.ffl,VRN=VIMxxx. CDC PL tape.
UPDATE,N,C=0,I=M0DS.
PUT,NEWPL=NEWPSRLEV.
*EOR

(modifications, if any, to CDL, e.g.:)
$PURGE abc
$/ ABOVE MODIFICATION REFERENCES NON-EXISTENT DECK

Job 2 - Use "working" PL to generate product

GET,OLDPLrNEWPSRLEV.
UPDATE,...

(Rest of installation sequence.)
*EOR
*PURGE xyz plname (modification no longer desired)

(other modifications)

Installation Procedure

The creation of the installation procedure for a product deserves careful
attention, since this will contribute much to the success of the project. This
section gives some helpful hints for determining and creating the correct
installation procedure.

STRAP No. 2.2
Page 4

The CDC installation control card sequences are contained on the BCC tape,
usually as the third file. The control cards are contained on an UPDATE PL with
a master control character of "=". The decks have names of "PLnnI" where "nn" is
the CDC PL number. Note that these decks are general-purpose installation decks
meant for all CDC sites, and contain a number of options, selected by UPDATE
=DEFINE directives. All of these make the decks somewhat incomprehensible, but
with some effort, some sense can be made out of them. Refer to the Installation
Handbook for details on the various options and for other important installation
information.

For PL's that are not new to MSU, there are installation decks maintained by
Systems Integration which describe the installation procedure. These decks are
maintained on a HAL library (SIN) and have deck names of the form I*plname.
Typically, there are at least two parts to any installation procedure, with
subsequent parts numerically suffixed. These names are also limited to 7
characters. The decks will normally be retrieved to local file "plname". For
example, to list the COMPASS installation decks, the following control cards
would be used:

HAL , L*SIN,ICOMPAS,ICOMPA2.
LISTTY,I=COMPASS.

The following description outlines the types of control cards or control card
sequences which comprise an installation deck. Not all of these occur for every
PL, and sometimes additional processes are needed.

1. Get the PL and do the UPDATE. The PL is either the VIM copy of a CDC
tape or the working PL. Typically, an UPDATE,F is desired.

2. Retrieve any texts, compilers, utilities, and user libraries needed for
this installation procedure. These are created by other installation
procedures or are available from the running system.

3. Compile or assemble the source. This will create binary files and
listings of the product.

M. Load the binary, creating an absolute program, if applicable. There may
be other necessary post-processing necessary to generate the desired
finished binaries.

5. Save any texts, compiler binaries, utilities, or subroutine libraries
which are generated by this procedure and needed by other installation
procedures. Subroutine libraries are typically saved in EDITLIB user
library format.

6. Save the binaries which are needed for installation on the final system
(for testing purposes). This may be included in #5.

7. Process the listings, map files, etc., if needed. This may include a
UPIC or a full listing or saving the listing for later processing.

Summary

The procedures described here are designed to ensure that the necessary items are
made available and ready so that the Systems Integrator can incorporate the
finished, tested product into the system. The process is general enough to allow
for the wide variety of installation procedures required.

STRAP No. 2.2
Page 5

If any deviations are needed from the procedures outlined in this STRAP,
especially regarding the various items given to the Systems Integrator, these
deviations must be discussed in advance with the Systems Integrator.

In general, the actual system generation will be accomplished
items specified above as being needed by the Systems Integrator.

using only the
Test binaries,

PL's, etc., are normally not used except in cases where a dependency problem
makes it necessary.

WRITTEN BY:

APPROVED BY

Michigan State University

Computer Laboratory

System's Tasks, Responsibilities and Procedures

Number 3.5

Installation of Michigan State University Modifications

June 1, 1984

1.0 Introduction

In order to avoid confusion concerning modifications made to the
different operating systems maintained by the Systems Programming Group a
definite procedure has been defined and is used in all cases. This STRAP
describes the procedure.

2.0 SMP requirements

Any user visible change or any major modification must have a Software
Modification Proposal (SMP) written and approved before the modification
can be considered for installation. The SMP should be written before the
modification is coded but it MUST be approved before Systems Integration
will accept the "Gift" Certificate. See STRAP 6 for SMP details.

3.0 "Monday List" requirements

This is a list of all modifications to all systems that are not minor bug
fixes. This list is published the day before the Computer Lab staff
meeting. All modifications except minor bug fixes or crash fixes must
appear on this list before they can be installed.

All user changes must appear on this list.

4.0 Debugging

Debugging of a modification is the responsibility of the programmer. It
is expected that the Project Leader will ensure adequate testing has been
done on the final version of a modification. The code review process is
not intended to find bugs in the code or errors in the design.

Copyright, 1984, Michigan State University Board of Trustees

Installation procedures - STRAP #3.5
Page 2

5.0 The Gift Certificate

After the modifications have been debugged to the best of the
programmer's ability a "Gift Certificate" (or "Gift") will be filled out.
As the form will reveal, its functions are many:

1. System Integration—the Systems Integrator will have a hard
copy of all of the changes that are being made to the system.

2. Dependence—gives an indication of what other routines must be
changed in order for this modification to work.

3. Identification—what the modification is called, who wrote it,
where the source of the modification is, what the modification
does.

4. Routing Information—who the modification goes to next (and a
record of where it has been).

, / 7

6.0 Code Review

The Gift Certificate along with a machine highlighted (UPICed) source
listing is sent to several reviewers described below. All Gifts go thru
this review path regardless of the status of the coder.

6•1 Design group review

The Gift is first sent to a "design group" reviewer. This should be
another programmer familiar with the project or area being modified.
If the Gift is work done on a multi-person project, then the first
reviewer should be a member of that project group.

The design reviewer will thoroughly review the code for adherence to
the following:

1. All subroutines and modules have complete initial
comment s.

2. All code has sufficient (but not excessive) comments.

3. The code is modular and not convoluted.

4. The code follows the published documentation (SMP and
design documents).

5. Complete testing has been done with adequate testing
under the latest system.

Installation procedures - STRAP #3.5
Page 3

6. The modification follows requirements for publishing an
SMP and being on the Monday list.

7. The product is well designed from a maintenance,
reliability, and modifiability viewpoint.

8. The modification follows the STRAP 9 specifications.

9. The modification was adequately tested under the latest
production system.

10. The modification does not unnecessarily require
abnormal, tricky, or complicated installation
procedures. If this installation proceedure seems
abnormal, systems integration must approve the process.

11. The modification fulfills any other requirements the
project leader wishes to impose.

6.2 Project leader review

If the gift is marked "ACC" (accepted if comments corrected), it is
then sent to the coder's project leader. If the project leader is
not available or was the design reviewer, another project leader may
be used. The project leader checks for the same things as the
design reviewer; however, since any major problems should have
already been corrected, this review should concentrate on the
overall modification and not the details.

6.3 Systems manager review

When the modification fulfills the above two checks it is given to
the systems supervisor. The systems supervisor checks for the
following:

1. The LSD data will result in a good quality document.

2. The modification was done in proper priority and followed the
constraints imposed.

3. Whether any other changes should be included in this
modification.

4. The modification satisfies any external considerations.

5. Spot checks the other reviewer's work.

(It is, of course, best to insure that items 2, 3, and 4 are
fulfilled before the modification is presented for approval—this
should be done by the project leader).

Installation procedures - STRAP #3.5
Page 4

6.4 System Integration

Systems integration only reviews whether the LSD data will result in
a good document and whether the Gift indicates that it should be
installed.

6.5 Code review routing and problem notation.

If the proposed modification fails to meet any of the review
criteria, the reviewer should explain the problems on the listing.
If it is a specific problem in relation to a given set of code, the
explaination should be written beside the problem code; a general,
overall problem may either be noted at the beginning of the listing
or at the first incidence. In any case, if the coder knows of a
similar problem it should also be corrected even if it has not been
found by the reviewer!

A problem may be considered "fatal" or "informative" by the
reviewer. An informative problem is one that does not require
correction before the code is installed, but should be noted by the
coder so that future modifications will be correct. Fatal problems
must be resolved before the code is installed. A reviewer further
along the review chain may upgrade an informative problem to fatal;
downgrading should not be done without discussion and agreement of
the previous reviewer. Usually, the ink color will indicate whether
the reviewer's comment is fatal or informative. Current tradition
has orange, red, and purple being reserved for fatal comments;
green, black, and brown indicate informative comments.

If the fatal problems are minor and can be corrected by fairly
simple changes, the reviewer should mark the ACC box on the gift
certificate and route the gift to the next reviewer. Otherwise, the
gift should be returned to the coder.

If significant problems are found at a level beyond the design
reviewer, the gift should be routed back thru the design reviewer.
This will help these reviewers to improve their skills.

If the coder disagrees with a reviewer's comment, the coder is
encouraged to discuss the situation with the reviewer. Discussion
is encouraged because this will allow both people to improve their
skills. If no resolution is achieved, an appeal may be made to the
systems manager.

Installation procedures - STRAP #3.5
Page 5

6.6 Installation

When the modification is fully approved, the Systems Integrator
(S.I.) will hold the modification until all Installation
dependencies (other modifications needed, Monday list timing, Major
System needed) have been met. If there are extensive dependencies
or a large number of modifications that have to wait several weeks,
the S.I. may send the partial package back to the project leader.
When the P.L. determines that all the Gifts are ready, the entire
package is sent directly to the S.I.

After installation the Gift, marked as installed, along with the
listing, will be returned to the Project Leader. The programmer
should note any comments on the listing for future reference.

6.7 Exceptional problems

Occasionally, a modification may get lost in this routing process.
The submitter is encouraged to follow up on any change that is not
heard from for over one week.

7.0 The Modification Deck

Modification decks will be 'usable' by UPDATE. In addition, each IDENT
will have the following five features to make installation and
documentation as easy as possible.

1. The first line of the modification deck is an *IDENT card. The
*IDENT line is of the following format:

*IDENT idname PLname

The PLname is the name of the UPDATE PROGRAM LIBRARY this
modification affects. The PLname must start in or before column
73. *IDENT can be abbreviated.

NOTE: The optional UPDATE parameters B=, K= and U= may not be used
without the approval of the Systems Integrator.

All *PURGE and *PURDECK lines must also contain the PLname
starting in or before column 73.

""COMPILE lines may also use the PLname if the decks mentioned are
not on the same PL as that appearing on the *IDENT line. This
allows reassembly of routines on different PLs in order to make
use of changes to texts or the COMDECK PL.

2. *DECK lines should always have the identifier "name.l" in the deck
"name." When an identifier is also a deck name, lines from that
ident should only appear in that file.

Installation procedures - STRAP #3.5
Page 6

To facilitate LSD writing and documentation, UPDATE comment lines
are added to the modification file. The initial deadstart,
operational and user changes sections are 'stand alone' and should
be neat and consistent with the remainder of the LSD. All of the
comments of each type are gathered from each ident and then
printed in the appropriate LSD section with other comments of the
same type. The format of the comment line is:

7
1 4 6 2
*/ x ccr c

Where C is the comment and X is the type of comment. Note that
there is a blank between the X and the C—this is required. Also,
all comments that are not of a required format must be complete
good English sentences. Jargon and abbreviations should be
avoided.

Comments of type 'D', 'G', '0', 'U' should be in "upper/lower"
format.

Below are the different values of X:

D - Description of the modification—this is the part that goes
in the section of the LSD under IDENTIFIERS. It must
describe to a reasonably knowledgeable person (someone who
has taken the Systems student training program) all changes
that were made. This must describe the changes; simply
saying something like "Install modification to allow CYBER
Loader to run on our system" is not acceptable. The first
"*/" lines in any ident must be "*/ D" lines; however, it
is not necessary to place all "*/ D" lines at the beginning
of the ident.

E - EDITLIB lines in the following format; beginning in column
6 the EDITLIB Library Name affected (ex: NUCLEUS, PPLIB or
SYSOVL) followed by a slash (/) and then the EDITLIB
command. There should be no blanks next to the slash.
These should be used to DELETE binaries on the deadstart
tape that one no longer needs.

Example:

If routine A is to be moved from the NUCLEUS
library to the FORTRAN library, along with the
necessary modification to PRE, the source for
the gift should contain a *COMPILE line to
reassemble A and the following '*/ E' line.

*/ E NUCLEUS/DELETE(A)

Installation procedures - STRAP #3.5
Page 7

F - Dayfile messages in the following format; beginning in
Column 6 of the first comment line should be the dayfile
message exactly as it will be in the dayfile. Column 10 or
after of subsequent lines should be a further clarification
of the message (but the message should be perfectly clear
in itself). This clarification should be in "upper/lower"
format.

Example:
1

6 0
*/ F PRE - INVALID CHARACTERS
*/ F O\CCURS WHEN NON-ALPHANUMERIC

CHARACTERS
*/ F \OCCUR IN A PARAMETER.

G - General comments—this is the part that goes in the section
of the LSD under GENERAL. These are normally inserted by
the Systems Integrator, and are used to indicate the major
changes or "Monday list" items which appear in the system.

General comments should be kept short and of general
interest to most knowledgeable users.

L - Level number changes. Whenever a dependent product PL is
updated to a new PSR level number, a '*/ L' line must be
included. The level number should be in column 6 and the
PLname in column 10. Example:

*/ L 420 FTN

0 - Operational changes—this section must describe all changes
that will affect the Operator, such as:

changes to DSD visible to the operator when the
keyboard is in LOCKed mode (new or changed
commands or displays).

new or different messages that the operator
must respond to.

new or different procedures for initializing
attached mini computers.

how to use programs that work only (or
differently) from the console (or operator's
terminal).

S - STIRs fixed by this modification. The format is one STIR
number per line beginning in column 6.

Installation procedures - STRAP #3.5
Page 8

Example:

*/ S 7628
*/ S 8219

The type D lines should also contain the sentence
"This fixes STIRs 7628 and 8219".

U - User changes—this section must describe all user visible
changes. It should be complete enough that a knowledgeable
user (such as a consultant) would recognize and understand
the change once seen.

blank -UPDATE comment lines with blanks in columns 3 and 4 may
be used freely within an ident (following the initial "*/
D" lines). These lines will be saved on the Correction
Deck Library, but are otherwise ignored.

3. A correction history section should be included in each
modification. The format for these comments:

col. 1 3 6
* author - date
* comments describing the modification

The date should be mm/dd/yy. Two digits are preferred (05/08/73).
The correction history section does not occur in all routines.
Any modifications made to routines that do not have the correction
history should also add this section..

New routines may also include this section at the coder's option.
The format for the correction history section:

2
col. 1 0

*IDENT CHnnnnnn PLname
*/ D START CORRECTION HISTORY FOR 'nnnnnnn'.
*I nnnnn.xx
**CH* CORRECTION HISTORY:

**CE* END OF CORRECTION HISTORY
*C nnnnnnn

These lines should have the ident "CHnnnnn" where "nnnnn" is the
deck name of the routine. All correction history comments will be
inserted by the line "*I CHnnnnn.2" (This will give the most
recent modification first.)

When starting a correction history, try to keep it on the first
couple of pages of the listing. Special warnings such as BASE
changes or non-standard column conventions should immediately

Installation procedures - STRAP #3.5
Page 9

precede the correction history so they will be visible in a UPIC
listing.

When modifying the texts, a correction history is also included.
The insert point is *I CHSYMBOLS.2 if you are adding new symbols.
*I CHMACR0S.2 is the point when the macro changes are made. By
compiling the deck TEXTCH (*COMPILE TEXTCH or *COMPILE =TEXTCH).
The correction history may be seen.

4. The last line(s) of each modification is the appropriate *COMPILE
line(s).

5. Use of the following UPDATE directives is prohibited (without
approval of the Systems Integrator):

ADDFILE
CHANGE
DECLARE
DEFINE
DO
DONT

ENDIF
ENDTEXT
IF
MOVE
NOABBREV
NOLIST

READ
SELPURGE
SELYANK
SEQUENCE
TEXT

8.0 Installation

There are three 'levels' of installation.

1. Crash Fix—a modification may be installed in the middle of the
week if it fixes the cause of system crashes or a very major bug.
The modification must be walked through the approval process by the
Project Leader or the coder.

2. Weekend systems—general bug fixes and improvements are installed
in a system that is used for Saturday and Sunday production.
Modifications for this system must reach the Systems Integrator
fully approved by Tuesday 16:00.

3. Major systems—non-upward-compatible user visible changes (such as
a new version of a compiler that won't accept all source statements
the old version would) are saved for major systems i.e. LSD XX.00.

In all cases the Systems Integrator will make up the appropriate PL
tapes after the deadstart tape is created. Systems integration
will also maintain permanent file copies of certain current PLs.
There is a transition period between systems in which we may not be
sure which system is on the permanent file. As a general rule, the
PFs will match the system that is currently fully operational.

WRITTEN BY Mark R. Riordan

APPROVED BY Richard R. Moore

Michigan State University

Computer Laboratory

System's Tasks, Responsibilities and Procedures

Number 4.1

Writing 6000 SCOPE Memos

March 28, 1977

A 6000 SCOPE Memo (6SM) or an M4 (see STRAP 11) is written for each
system alteration. The 6SM should usually cover a project. However,
when there exists a 6SM on some section of the project, then the
existing 6SM should be brought up-to-date and the project 6SM should
reference the existing 6SM. For example: the installation of the CYBER
Loader modified many routines one of which was PRE. The 6SM for the
CYBER Loader project should simply refer the reader to the PRE 6SM.
The PRE 6SM would be brought up-to-date.

A 6SM is brought up-to-date by either an M4 appendix, a 6SM appendix,
or by republishing the 6SM with revision number incremented by one. If
the changes are extensive, a revised 6SM is preferred. If the 6SM is
available in machine readable easy to update form, it should be
revised. The revision can consist of change pages so that the entire
6SM does not have to be republished. Each 6SM is numbered by the
Technical Assistant. The number has the form "n.r". "n" is the number
of the 6SM in the sequence of all 6SM's; "r" is the revision number for
this specific 6SM.

The 6SM serves many purposes. It provides a complete internal and
external description; it gives the reason for the modification; it
tells where to go to get further information. The 6SM can be used by
the person writing user documentation; it can be used by the person
learning about how this modification was done; it can be used to learn
about the considerations that went into the creation of the
modification. It can be used to describe to other installations what
we did and how we did it so that they can judge whether they might
attempt to install the modification.

However, the 6SM is not to replace or duplicate the incode
documentation.

The 6SM for any low priority projects must be published before the code
is installed. The 6SM's for high priority projects must be published
within 4 weeks of installation. The 6SM is written by the coder (or
coders) and is approved by the Project Leader that reviewed the code.
The systems supervisor then reviews the 6SM before it is published.

STRAP 4.1
Page 2

The 6SM should have a heading that identifies the 6SM: the number, the
title, the date written, and MSU Computer Laboratory. The bottom of
the first page should have this copyright notice: "COPYRIGHT year,
MICHIGAN STATE UNIVERSITY, BOARD OF TRUSTEES." (The "year" is the year
the 6SM is published.)

This section format must be followed when writing 6SM's. This helps
insure' that all important points are covered.

1.0 INTRODUCTION

This section should briefly describe the purpose and justification
of the modification.

2.0 EXTERNAL REFERENCE SPECIFICATIONS

This section should describe the external characteristics of the
modification. If the change is strictly "internal", there should
still be some external features. For example: "This modification
will eliminate all channel hangs" or "It is possible to turn off
the device and still accomplish the XYZ task by using the old ABC
device."

If there are user effects, a manual change could be written from
this section.

If this modification is a new user callable routine, this section
is a complete description of how the user can use this routine.

If this is an extensive modification of an existing routine
(usually supplied by an outside source) then it may be best to
completely describe the external specifications.

3-0 SYSTEM PROGRAMMING CONSIDERATIONS

This section will mention the specific routines modified or added
and the LSD under which it was installed. Any assembly options,
other changes required, and general cautions should be described
here. If general tables such as the control point area have been
altered slightly, it should be noted here along with a picture of
the new part of the table (at least one word) and what modules use
this altered information.

4.0 INTERNAL REFERENCE SPECIFICATIONS

This section describes what internal changes were made. However,
it must not be too detailed (most early 6SM's suffer from being
too detailed). To use the forest and tree analogy: you should
describe the various meadows and groves you might find, certainly
warn where the dangerous bears lurk, possibly tell about a very
notable tree. But, you should not describe each tree and bush,

STRAP 4.1
Page 3

nor should you tell about the bark and leaves. A more concrete
example can be found in 6SM 99. However, that does not completely
follow the outline below.

The data structures used should be described in pictures
(preferably plotted) and what routines use or modify which fields
should be told.

Organization of this section (assuming a major modification):

"First, a very general overall flow (again with pictures and
examples) is given. Second should be the pictures of the tables
with references to the descriptions of the modules that use these
tables. Third, if necessary, a table of contents for this section
which gives the section numbers of the descriptions of the various
modules Finally, the overall flow is broken down into the modules
created when you did the top down design. Usually only the first
three (possibly four) levels need to be described. Frequently, a
block module picture will be useful.

The purpose of this section is to allow one to become familiar
with the "forest" to the extent that a small local alteration can
be made knowing only the immediate vicinity in detail.

5.0 OPERATOR COMMUNICATIONS AND PROCEDURES

This section should describe how this modification alters the way
operations does things. It describes any new messages and
displays. It tells what actions are requested of the operations
staff.

6.0 USER ASPECTS

What benefit will the users see with this modification? This
section should explain why the users should feel this change has
helped them. It should also summarize and describe alterations
that will be found by the user.

7.0 SYSTEM FILE CHANGES

This section will describe any additions or changes to the various
system files such as the dayfile or the C.E. error file.

8.0 REFERENCES

This section should refer the reader to any associated 6SM's. It
should also give the software modification proposal number. Both
titles and numbers should be given when possible. If this 6SM
will refer to a yet to be written 6SM, it is possible to reserve
6SM numbers ahead of time, but you do commit to writing that 6SM.

WRITTEN BY:

Richard R. Moore

Michigan State University

Computer Laboratory

System's Tasks, Responsibilities and Procedures

Number 5.2

Maintenance of Systems' Tape Library

June 5, 1984

1.0 Description.

The Systems group tape library consists of all tapes with a prefix of
"VIM." Frequently used tapes are kept in the machine room, in racks
separate from user tapes. Less frequently used tapes are stored in Room
301. They are arranged by number; each tape has a unique position in the
racks.

A list of tapes is kept by the technical assistant (T.A.). The list
contains the VRN (visual reel number), owner, use, date tape was
assigned, length, location, and density for each tape. Two full lists
are posted: one on the Systems' bulletin board in Room 301, and one on
the Systems' tape racks in the machine room. A separate list of
available tapes is posted on the bulletin board. These lists are updated
weekly.

2.0 Procedures for Library Users.

2.1 Each tape in use has a sticker of the form:

A VIM tape without such a sticker is available for use.

Copyright, 1984, Michigan State University Board of Trustees

Maintenance of Systems' Tape Library - STRAP #5.2
Page 2

2.2 A person needing a tape can take any tape without a label as
described above. The available tape list on the Systems' bulletin
board should be consulted to verify that the tape is available. A
person taking a tape must cross the tape name off the available
list, and put a sticker (as described in section 2.1) on the tape.
They should also send a note to the T.A. saying that they have
acquired the tape. The note should include their name, the tape
VRN, its new use, and tape location or density if either will be
changed.

2.3 A person releasing a tape should:

1) blank label the tape (ensure PN=000000)

2) remove the paper label

3) notify the T.A. that it is free (send a note)

4) hang the tape on the tape racks where the other AVAILABLE-FREE
tapes are.

2.4 Every month every person holding tapes will receive a copy of the
list of tapes he holds. If the owner wants to update the
information on the list (or return a tape to AVAILABLE), they should
mark each correction on the list and return it to the T.A., or just
send a note.

3.0 Procedures for the Technical Assistant.

A. The technical assistant will maintain a list of the contents of all
the Systems group's tapes, update the list weekly, and distribute
to each person holding tapes a list of the tapes they hold monthly.
A weekly available tape list will be posted on the Systems'
bulletin board. Three weekly full lists are sent to the Systems
Supervisor, the Systems' bulletin board, and the machine room tape
rack.

B. Current procedures for maintaining the listing are as follows:

A Query Update procedure is in use that generates master lists and
individual lists.

1) The tape list and QU procedures are maintained on the
permanent file TAPEASSIGN. This file is an Editor work file.

Information kept on each tape is VRN, user name, label
description (use), date created, length, location, and
density in that order. Tab stops are set up at all fields
except VRN and NAME to facilitate updating information.

Maintenance of Systems' Tape Library - STRAP #5.2
Page 3

By convention, a tape with a VRN of VIMuuu is described on
the workfile line luuu. For example, VIM247 is described on
line 1247.

2) The full set of listings can be obtained by attaching the
permanent file as EWFILE and saying GO,"MONTH".

3) The weekly set of listings can be obtained by attaching the
file and typing GO,"WEEK".

Available tapes are assigned to AVAILABLE, use description
FREE. Special tapes are assigned to MOORE-ARS (for archive
storage).

C. Each week the T.A. will examine a portion of all the tapes and
update the list as needed to reflect the contents of the labels on
the tapes.

D. When the T.A. receives a note to make a tape available free, the
T.A. should insure that:

1) The paper "stickum" label has been removed.

2) The tape has been blank labeled, i.e., the PN in the label is
000000.

3) The tape has been placed with the other AVAILABLE-FREE tapes.

If any of the above have not been done, the T. A. should do them,
after first ensuring that the tape really was owned by the person
making the request. This is done by checking the stickum label,
the PN on the tape label, and the tape assignment list.

Finally, the entry for the tape in the file TAPEASSIGN should be
changed to have an assignee of the AVAILABLE, and use description
of FREE.

WRITTEN BY: Glen J. Kime

APPROVED BY: Richard R. Moore

Michigan State University

Computer Laboratory

System's Tasks, Responsibilities and Procedures

Number 6.2

The Software Modifcation Proposal Document

June 8, 1984

A proposal must be written for any additional user software product or user
visible change of any product. Also, a major modification of any product that
is not user visible is proposed in writing. This proposal is then circulated
for additional comment and viewpoints. This way all factors can be considered
and modifications are not made in a vacuum.

Procedure

The Software Modification Proposal (SMP) is written following the format
outlined below. The SMP is then approved by the project leader; informal
review is also done by the system programming supervisor. Then the systems
programming supervisor assigns the SMP number and attaches and fills in a
cover sheet for reviewers' comments. The reviewers are expected to return the
cover sheet by the final date for comments.

If the reviewers' comments indicate that a meeting to explain things further
or to resolve some differences is necessary, a meeting of the reviewers will
be held. Otherwise a reply to these comments will be written by the writer of
the SMP.

Approval, Disapproval

Approval, or disapproval of the proposed modification is given, in writing, by
the Director of the Computer Laboratory or their designee.

Approval does not mean approval to work on the modification. It simply means
the proposal is deemed to be reasonable and is approved. Work on the
modification must only be done when it receives high priority or when it is
contained within some other high priority work and adds no more than 5%
implementation time onto that work.

Disapproval of the proposed modification means that the modification is not
acceptable in its present form. If the proposal is not to be rewritten, then
it should be dropped.

Copyright, 1984, Michigan State University Board of Trustees

Writing SMP's - STRAP #6.2
Page 2

Format

The following format should be followed when a Software Modification Proposal
is written. The sub-paragraphs should be numbered.

1.0 Introduction

This should give an overview of the modification.

2.0 Present Condition

Describe the present state of affairs with which the proposal is
concerned. This should show why the modification is needed.

3.0 Proposed Modification

Describe how the proposed modification will change the current system.
How this will help the problems mentioned earlier should be noted. A
precise description of the user interface must be included. In most
cases, examples and error diagnostics should also be given.

4.0 Implementation Details

4.1 The modifications to specific routines and any new routines
necessary should be briefly described.

4.2 Estimate the amount of time to implement the change and the amount
of time before the full change is available for use. For example: 7
work-weeks of time—the change will be available 10 weeks from start
of work; four full-time weeks, six half-time weeks.

Also give the dedicated and production computer resources.

4.3 Describe any special procedures that will be necesssary for testing
purposes.

4.4 Describe any additional, special effort required by other groups.
Specifically, the documentation time for Technical Communications
must be included.

A rough draft of the SMP is given to the Technical Communications
section with a well defined user interface. They will return a
detailed work time estimate as well as a list of the manuals that
need to be changed. This should be included in this section.

Writing SMP's - STRAP #6.2
Page 3

5.0 The Effect of this Change

5.1 On the user

5.2 On operations

5.3 On the accounting system

5.4 On the system files (dayfile, C.E. error file, etc.)

6.0 Summary

This should summarize and motivate the proposed change. It should give
the benefits and costs of the modification.

The SMP usually serves as the preliminary user documentation for user
services. Any change in this documentation must be preceded with a memo to
all reviewers describing the change.

The permanent file SMPSKELETON contains an Editor workfile with an RNF
skeleton for an SMP. You should use FCOPY on this workfile and then fill in
your copy as needed.

WRITTEN BY: Richard R. Moore

Michigan State University

Computer Laboratory

System's Tasks, Responsibilities and Procedures

Number 7.4

Monthly Report Content and Style

June 7, 1984

Everyone in the systems group writes a report at the end of each month
describing all the work they have done during that month and the work they
expect to accomplish next month. These reports are written using RNF in a
manner described below. They are to be completed and given to your project
leader or (if you have no project leader) the Systems manager by the end of
the second working day of each month. The report should cover all activities
of the previous month.

The report is completed when a rough draft has been approved by the project
leader or manager.

These individual reports are merged into a final Systems Programming Monthly
Report by the manager of systems development. This final report is
distributed to other areas within the Computer Laboratory and to the Computer
Operations and Finance committee. This report must be published by the 10th
working day of the month.

All reports must use good English sentences. The reports may be edited if
they are considered inappropriate for general distribution.

Descriptions may depend upon previous months' reports (with proper citation),
but they should be as free of jargon as possible. They must not be a repeat
of the previous months' report.

1.0 Preparation using RNF

The permanent file "MONTHLYREPORTSKELETON" should be copied (using FCOPY
on HAL) to your local editor workfile. This file contains lines that
will show you where to place the sections of your report. You should
never delete ANY lines that were in the skeleton.

After you have finished writing the report, run it thru RNF and send this
rough draft to your project leader or the Systems manager.

When the rough draft is approved, and not before then, the source from
the ewfile (lines 100000-*l) should be saved and cataloged with the name
"iiiMRnn". "iii" represents your initials and "nn" is the month number

Copyright, 1984, Michigan State University Board of Trustees

Monthly Report Writing - STRAP #7.4
Page 2

(with a leading zero if necessary). If, for some reason, you did not use
the current "MONTHLYREPORTSKELETON" permanent file, then you should save
the source for only those lines you entered - none of the skeleton lines
should be saved.

For example: when the rough draft of the August monthly report was
approved, the commands:

SAVE,MR08,SO,100000-*L.
PUT,MR08.

would be done. NOTE: the line range MUST be 100000-*L, and the SOURCE
must be saved. Do NOT save with the line range described by the string
with your initials.

When the monthly report is published, then you should purge the permanent
file you created.

2.0 Monthly report format and style:

The monthly report contains six sections. It is important that you
follow precisely the style outlined so that the final report is a unit.

2.1 Written review and plan for next month section

In this section the programmer briefly describes how well the
expected accomplishments were met during the month and specific
projections of work during the next month. The reason for any
deviation from projected goals should be noted here.

This section begins on line number 100000 in the monthly report
skeleton workfile. The place where you should add your part is just
after the line that contains ".rp iii" (iii is your initials).

There should be at least two paragraphs written. The first will
describe what you accomplished this month, contrasting the
accomplishments with the expectations mentioned the previous month.
The second paragraph will contain the specific projections for next
month.

2.1.1 Style:

.rp .iii
This month fixes for STIR'S 1125, 3943, and 4047 were
installed as predicted. However, the PF RENAME feature
was not completed because machine time was usurped by
high priority projects. The time was spent analyzing
STIR'S 4048 and 5143 instead.

Next month the RENAME project should be installed as
well as fixes for STIR'S 4048, 5143 and 5021.
Investigation will begin on the ten high priority
SELDUMP stirs.

Monthly Report Writing - STRAP #7.4
Page 3

2.2 Project summary

This section describes, by project, the work done on that project.
It should also include, in a separate paragraph, a review and
projection for the project for major projects.

If you are describing a module of a large project which you have
worked on with other people, then you will be describing a
subproject. In this case, the global description for the project
would be written by the team and included in one member's report.
This global description would contain the review and projection.
The Systems manager will edit the pieces into a whole report.

This section begins on line number 200000 in the monthly report
skeleton. The place to add your report is indicated by a ".rem"
line with your initials. Refer to the RNF macros section for an
explanation of the ".proj" and the ".subproj" macros.

2.2.1 Style for a simple project:

.proj (project title)

.iii

[description of work done, problems encountered,
solutions to problems, techniques discovered, etc.]

[review and plan for next month]

2.2.2 Style for a large project with separate modules worked on by
several people:

.proj Project title

[possibly a general description]

Review and plan for next month
[review of previous months goals and accomplishment of
them. Realistic expectations for next month.]

.subproj Sub-module 1

.iii

[description as in simple projects]

.subproj Sub-module 2
•jjj

[description]

Monthly Report Writing - STRAP #7.4
Page 4

2.3 Maintenance summary

This section describes, by project or item, the work done on
maintaining the current system. This includes STIR fixes, system
creation, products assigned a maintenance status, etc.

This section begins on line number 300000 in the monthly report
skeleton. The place to add your report is indicated by a ".rem"
line with your initials. Refer to the RNF macros section for an
explanation of the ".proj" and the ".subproj" macros.

2.3.1 Style:

.PROJ System Generation

.iii

[description of system generation work]

.stir 4135 - Incorrect buffer parameter error:

.iii.cr

[description of work done to fix this STIR]

2.4 Work summary

This is a summary, by individual, of the projects assigned to that
person, the work done, the priority, and the percent of effort spent
on each project.

This section begins on line number 400000 in the monthly report
skeleton. The place to add your report is indicated by a ".worksum
.iii" line. Refer to the RNF macros section for an explanation of
the ".worksum" macro.

2.4.1 Style:

.worksum .iii
project 1 .t - .t W .rt VH .rt 75 .cr
project 2 .t - .t C .rt H .rt 20 .cr
project 3 .t - .t - .rt OG .rt 5 .cr
project 4 .t - .t N .rt M .rt 0 .cr

These tabs position the development plan item number, the
work done, the priority, and the percent of FTE spent on the
specified project. If you set the tabs in SCREDIT to
54,63,69,76, and 80, the "dup-tab" SCREDIT feature will be
effective and the final ".cr" can be omitted (the first *'.t"
would begin in column 55).

Monthly Report Writing - STRAP #7.4
Page 5

2.4.2 Work summary columns

2.4.2.1 Development plan item number:

Since the development plan item numbers have not
been assigned recently, the first tab position has
simply a dash unless the item number is known.

2.4.2.2 Work done column:

The allowable codes in the "Work Done" field (the
codes must be capitalized):

W - worked on
C - completed (a project is completed only after

all documentation is done)
N - no work done
- - a dash is be used for ongoing work

A project must remain on the list until it is
completed.

2.4.2.3 Priority assignment column:

The allowable codes in the "Priority" field:

VH, H, M, L, VL, OG
where H, M, L are high, medium and low and the V
means very. OG means an On-Going project.

2.4.2.4 Percent of work column:

The "Percent of Work" column gives the percent of a
full time effort spent on that project during the
month. If a half time person is reporting half time
work for the entire month, then the total of the
percent worked column should be 50. The accuracy,
if such records are kept, can be to one digit to the
right of the decimal point (i.e., 75.2 percent).

People should not include unpaid items such as
studying for exams, etc. However, paid holidays and
vacations should be included.

Monthly Report Writing - STRAP #7.4
Page 6

For example: assume that there are 22 weekdays in
the month. If you worked for 10 days completely on
project A, 11 full days on project B, and 1 day was
a holiday, your percent of work would be calculated
by:

project A 10 x 8 = 45%
22 x 8

project B 11 x 8 = 50%
22 x 8

Holiday 1 x 8 = 5%

If, however, you worked that holiday (on Project C)
then you would add to the above summary a line for
project C:

project C 1 x 8 = 5%
22 x 8

Therefore your percentage would total to more than
100%. Since the work done column represents the
percentage based on a full time equivalent, whenever
you work more than an FTE, the percentage will total
more than 100%.

If during the next month (21 days) you worked 12
days on C, 8 days on A, and took one day off for
comp time, then your work summary would be:

project C 12 x 8 = 57%
21 x 8

project A 8 x 8 = 38%

You do not show the comp time; it is implied by the
fact that the total does not equal 100%.

2.5 Documents published

This is a list of documents published by you during the month
reported. It should include the series identification (SMP, SMD,
etc.,), the titles, and the date published. The document must have
been published; reports still being typed or printed should not be
mentioned.

This section begins on line number 500000 in the monthly report
skeleton. The place to add your report is indicated by a ".rem"
line with your initials.

Monthly Report Writing - STRAP #7.4
Page 7

2.5.1 Style:

SMP 137.1 project 1 title 3/24/83
SMD 167. 6SM title 3/15/83
User Notice 3 title 3/28/83
misc. report maximizing thruput 3/17/83

The actual positioning is not relevant; this section will be
edited by the Systems manager.

2.6 Miscellaneous

This section contains any miscellaneous comments, general problems,
accomplishments, etc.

This section begins on line number 600000 in the monthly report
skeleton. The place to add your report is indicated by a ".rem"
line with your initials.

2.7 Special reports:

The people responsible for crash analysis on the various computers
must include summaries of system reliability (which gives crashes
incurred, fixed, etc.) and a list of all crashes for the month.
These reports will be included in the maintenance section. The
actual style is particular to the computer system.

The person responsible for STIR's must include an accurate summary
of the STIR activity during the month.

3.0 RNF Macro's

Names: Macros for each person's name are defined as ".iii" where iii is
the person's initials. These should only be used with the ".PROJ",
".SUBPROJ", and ".STIR" macros.

Projects: Each major project should begin with the macro ".PROJ". The
remainder of the line will be taken as the project title. If you want
your name to be part of the title, place ".iii" on the NEXT line;
otherwise, put a blank line following this title line.

Subprojects: Modules within a major project should begin with the macro
".SUBPROJ". The remainder of the line will be taken as the title for the
subproject. If you want you name to be part of the title, place ".iii"
on the NEXT line; otherwise, put a blank line following this title line.

STIR's: Each STIR should begin with the macro ".STIR" followed by the
STIR number and then the title. The remainder of the line will be taken
as the STIR title. The following line must contain the macro ".iii".

Monthly Report Writing - STRAP #7.4
Page 8

Work summary: The skeleton contains the ".WORKSUM .iii" macros for each
person in the systems group. This macro will set up the tab stops for
the various columns of data. You should use right tab (".rt") commands
for the priority and percentage work columns. Each summary line should
end with ".br", ".cr", or end in column 80.

Review and Plan: The skeleton contains the ".RP .iii" macros for each
person in the systems group. This establishes where each person should
place their review and plan comments.

Others: The macros described in the "RNF Macros" memorandum are also
available.

If these guidelines are followed, the final report will be easy for people
outside of the systems group to read. The monthly report is the main vehicle
to tell others about our work to facilitate their usage of the computer
systems. It is important that this report be clear and concise.

WRITTEN BY: Richard R. Moore

Michigan State University

Computer Laboratory

System's Tasks, Responsibilities and Procedures

Number 9.4

Guidelines for Coding Practices and Conventions

June 8, 1984

The charter of the Michigan State University Computer Laboratory Systems Group
is to best support the system software needs of the Lab. This means the
development and maintenance of large amounts of code with high reliability and
modifiability.

The most important criteria to be considered when designing and coding then
follow:

1. High reliability. Program units must work accurately, according to the
designed external specification, with no harmful side effects. This
includes both ensuring that the overall stability of the system is not
decreased by a modification (i.e., don't cause crashes!) and ensuring
that existing, working programs are not broken by any changes.

2. Modifiability. Program units are continually being changed, to fix bugs
and to add new features. A routine which cannot be easily modified is a
liability to our system.

3. Usefulness. To be worthy of the time in programming (and in later
maintenance), a routine should provide a significant benefit (directly
or indirectly) to the user community. Since we are in business to
provide computing service to the University users, our time must be
spent on projects which most benefit the user, even if those projects
are not necessarily the most exciting or fun to code.

4. Ease of use. Any new feature available to the user should be simply
described—always rough out the user documentation during the design.
Difficulty in writing a simple, easy to understand external
specification usually indicates a product that users will never be able
to use confidently and without error (i.e., a worthless product).

5. Efficiency. In most cases high efficiency is a low priority goal.
However, since good turnaround and response time are very important,
modifications in certain critical areas must be designed so they do not
reduce the effective amount of computing power to the user. Note that
in almost all cases, efficiency goals are handled at the design level,
or by not doing a project at all if it will detrimentally affect

Copyright, 1984, Michigan State University Board of Trustees

Coding Guidelines - STRAP #9.4
Page 2

turnaround. Trying to squeeze a few microseconds out of a piece of code
by "tricky" programming typically results in no significant gain at a
great cost in reliability and modifiability.

Simplicity and Precision

The above goals lead to two primary principles for design and coding:
simplicity and precision. These two principles are the primary basis for the
rules laid down in STRAP 9.

Simplicity. Complexity is probably the greatest single foe to each of the
above mentioned goals. Be modest. Design small modules that have a single,
well-defined function.

Simplicity should apply to external specifications, internal design, module
function, module entry/exit conditions, programming technique, etc. A good
structure design chart, written before coding begins, will insure that your
modules are simple.

Precision. The other major enemy of successful systems programming is
imprecision (vagueness, indefiniteness, or downright slop). A design is of
little value if specifics are not clearly laid out.

Precision in programming is of tenfold more importance. Exact definition of
data and processes is vital to the health of any non-trivial (greater than 30
lines?) program. All variables need their use described, including type,
possible values, context of use, etc. Every routine must have an itemized
list of entry conditions, exit conditions and how they are related (i.e., what
the routine does).... This is the key to modular programming. Violate it and
instead of a simple collection of simple modules (which is generally easy to
follow and understand), you will have essentially one giant program (since the
reader must keep all of the unwritten specifications in his head) which will
prove to be hard to maintain, if not impossible to debug.

These two primary principles, simplicity and precision, are the key to
designing and programming code that can be debugged, documented, and
maintained.

Coding Guidelines - STRAP #9.4
Page 3

Table of Contents

1.0 Comments within a Program 7

1.1 Global comments: 7

1.2 Within the Code 8

1.2.1 Subroutines (or other logically complete sections of code) 8

1.2.2 MACROS 10

1.2.3 Tables 10

1.2.4 Narrative 10

1.2.5 Correction History 10

1.3 UPDATE comments: 11

1.4 DOCK 11

2.0 Design and Coding Practices 12

2.1 Structure 12

2.2 User messages and diagnostics 13

2.3 Error detection, analysis, and processing 13

2.4 Copyright 15

2.5 UPDATE common decks 15

3.0 Symbols and Names (including routines, variables, macros, etc.) 15

3.1 General naming rules 15

3.2 Symbol usage 17

4.0 UPDATE Conventions • 18

4.1 Deck Reseguencing 18

4.2 UPDATE Abbreviations 18

4.3 Correction Deck Structure 18

4.4 Common decks 19

4.5 *YANK Identifiers 19

Coding Guidelines - STRAP #9.4
Page 4

4.6 Miscellaneous 19 j

5.0 COMPASS Conventions 20

5.1 General Guidelines 20

5.1.1 Be clear 20

5.1.2 Be careful 21

5.2 General in-code comments 22

5.3 Global Restrictions 22

5.4 Symbol definition and usage 24

5.5 Scope text symbols 25

5.5.1 Symbol conventions to reference table entries 25

5.5.2 Other text symbol conventions: 25

5.5.3 Table prefixes in symbol table 26

5.6 General pseudo-op usage 27

5.6.1 DATA and CON usage 27

5.6.2 BASE and CODE usage 28

5.6.3 COMMENT usage 28

5.6.4 VFD usage 28

5.6.5 USE, ORG and other block counter operations 28

5.6.6 LIST options 28

5.6.7 QUAL pseudo-op 29

5.7 Macro definition (including OPDEF, CPOP, PPOP, etc.) 30

5.7.1 General 30

5.7.2 Things you must not do with macros: 31

5.8 MACRO usage 31

5.9 CDC Central Processor Coding 31

5.10 CDC Peripheral Processor Coding 33

5.10.1 Direct storage usage 33

Coding Guidelines - STRAP #9.4
Page 5

5.10.2 General practice 35

5.10.3 New or significantly altered PP routines 37

5.10.4 PP Macro Usage 37

6.0 INTERDATA coding 37

6.1 Mechanics 37

6.2 General restrictions 38

6.3 Alignment problems 39

6.4 Loading halfwords 40

6.5 Logical and arithmetic compares 40

6.6 BXH and BXLE 40

6.7 Register Conventions 41

6.7.1 R0 and Rl 41

6.7.2 ISR's and SVC's 41

6.7.3 Subroutine Parameter Registers 41

6.7.4 Scratch Registers 41

6.7.5 RC Problems 42

6.8 Disabling Interrupts 42

7.0 FTN Coding Standards 43

7.1 Standard conforming 43

7.2 Indentation 43

7.3 Symbols ." 43

7.4 DO loops 43

7.5 IF statements 44

7.6 GOTO statements 44

7.7 Intrinsic Functions 44

7.8 Diagnostics 44

7.9 Subroutine usage 44

Coding Guidelines - STRAP #9.4
Page 6

8.0 General Practices 45

8.1 File manipulation 45

8.2 Use of the no-op feature in the OAN,IAN instructions 47

8.3 Writing into ECS (or reading from ECS) 49

8.4 Channels and Interlocks 49

8.5 Files 49

8.6 Recovery 49

8.7 Memory usage 49

8.8 Documentation 50

9.0 Summary 50

Coding Guidelines - STRAP #9.4
Page 7

General Guide-lines

There are many guide-lines for design and coding that should be followed
regardless of the language being used. The particular implementation of these
guide-lines may differ among the languages, but the intent spelled out here
must be observed.

If you feel that any of these conventions seriously adversely affect your
project, talk it over with your project leader (or team member) and the
systems supervisor; exceptions can be made.

All quotes are from E. Yourdon's book, Techniques of Program Structure and
Design, the first six chapters of which you are expected to read and know
thoroughly.

1.0 Comments within a Program

Page ejects, titles, spacing, etc. should be used to visually aid the
reader of your code.

Abbreviations should only be used when the meaning is clear. For
example. "RBT" for Record Block Table is acceptable in a routine dealing
with this table; however RBT for Retry Block Test would not be acceptable
in the same routine. "O.R." is the only acceptable abbreviation for
output register (do not use"0R"); "NUM" is the only acceptable
abbreviation for number (dp not use "NO.").

It is always better to avoid abbreviations for names (spell out "number")
and multiple abbreviations for the same name must never be used.

In line in code comments should be terse, but still give the program the
information needed.

At all times an effort should be made to provide meaningful comments that
will be read and understood by other programmers. Cute, coarse,
derogatory comments may be funny the first time, but they inhibit easy
comprehension of the code and must be avoided. Furthermore, all comments
should be spelled correctly and not be chopped off by sequencing. Minor
spelling mistakes are acceptable as long as they are not frequent and do
not impair the comprehension of the code.

1.1 Global comments:

At the beginning of the main module of a routine there should be a
complete description of the routine. This would include concise
external specifications, internal flow, functions of the major
modules, locations of descriptions of major tables, description of
files used, any debugging aids, and how to compile, load, and
execute the routine. Also, the program library on which it resides
should be told. The compile, load, etc. information should be near
the very beginning of the routine.

Coding Guidelines - STRAP #9.4
Page 8

This description must be visually presented in a neat, easy to
follow manner. It should be expected that programmers would read
this section to orient themselves before making any modifications.

1.2 Within the Code

1.2.1 Subroutines (or other logically complete sections of code)

Subroutines must be documented at the beginning with (in this
order):

- purpose.

- what high level language other than the one being used
to write this can call it
(FTN,COBOL,SYMPL) if none, this line can be omitted.

- entry conditions ('A1 register, direct cells, high
memory pointers, registers set, etc.).

- parameter meanings and possible values (that are entry
conditions).

- exit conditions.

- parameters that are exit conditions

special exit conditions.

- direct cells, registers, or other data areas altered.
(Registers used are not given if the routine is written
in a high level language.)

- error handling.

subroutines called. (and, on the same line, what the
subroutine will do)

- special conditions or cautions (particularly for the
modifier of this routine).

- narrative of how it is going to accomplish its task.
The narrative must be in outline or structured english
style with proper indentation. If it is truly
straightforward a statement to that effect may be made.

Again, this narrative should be concise. Since it
should be describing a small module, if you have to say
too much then you have probably included too much in
the code.

Coding Guidelines - STRAP #9.4
Page 9

These comments must be presented in visually neat fashion.
The entry/exit statements must completely specify the
requirements of the routine. That is, this subroutine could
be replaced by a ''black box11 that would function correctly
if the specifications in this description were followed.

For example (a Compass subroutine):

SUBROUTINE READUR - ROUTINE TO READ A UNIT RECORD.
* CALLABLE BY: FTN
* ENTRY:- CALL READUR (LFN,ARRAY)
* WHERE:
* LFN = THE LOGICAL FILE NAME.
* ARRAY = THE ARRAY WHICH WILL
* RECEIVE THE DATA
*
* EXIT: ARRAY IS FILLED WITH THE NEXT CARD
* IN 80R1 FORMAT.
* ARRAY(l) HAS -1 IF EOF OR
* -2 IF EOI FOUND.

* USES: ALL BUT AO
*

CALLS: CPC TO MAKE THE READ REQUEST.
OPENFL TO OPEN THE FILE

* METHOD:
*
* IF FILE NOT OPEN THEN OPENFL(LFN);
*
*

WHILE••.»•

An alternative ENTRY/EXIT description is

* CALLING SEQUENCE: CALL READUR(LFN,ARRAY)

* ENTRY: LFN HAS THE LOGICAL FILE NAME LJZF
*
* EXIT: ARRAY HAS THE DATA READ IN 80R1 FORMAT
* ARRAY(l) HAS -1 IF AN EOF WAS READ;
* -2 IF AN EOI.

If ARRAY were something which was set before entry and
modified by the subroutine, it would appear in both the ENTRY
and EXIT comments.

It is very important that any modification which causes this
documentation to be incorrect also include a change to the
documentation.

Coding Guidelines - STRAP #9.4
Page 10

1.2.2 MACROS

Macros must include the same kind of general comments that
are specified for subroutines. Specifically, every parameter
must be described. The general purpose of the macro must be
stated. The registers, direct cells, data areas, (or what
ever is relavent for the language) used must be stated. For
non-trivial macros, the internal symbols, algorithm, etc.
must be described. The entire macro description must be done
in a visually clear fashion where, for example, the meaning
of each parameter is readily apparent.

1.2.3 Tables

All tables must be documented with:

what the table is, the meaning of each field in the
table, and how to add a new entry to the table
(including all things which must be altered when a
new table entry is added).

Adding a new entry to a table and causing the proper routines
to function with this new entry must be as simple as
possible. It should not require modifications in many places
in the code.

1.2.4 Narrative

Each small section of code should contain a narrative header.
This narrative should be a further refinement of the general
narrative placed at the beginning of the routine. The
narrative, unless it is repetitive, should also mention what
the vital data areas (registers, direct cells, etc.) contain
that will be used or must be preserved over the next section.

This narrative must be visually separated from the code by
either blank lines or a line with only the comment indication
character preceding and following the narrative.

1.2.5 Correction History

If this is a modification to a routine, it must include an
entry in the correction history.

The format for these comments is in STRAP 3.

It is important that the justification for the modification
be thoroughly explained in the correction history section.
If this is a fix to a problem, the correction history must
specifically state what the problem was and what was done to
fix the problem. Simply "fix bug in 1AJ" or "convert routine

Coding Guidelines - STRAP #9.4
Page 11

to SCOPE/HUSTLER" is not appropriate. However, it should
not, usually, detail specifically what was done - leave this
for the narrative to follow. That is, "Add processing of the
RG parameter on the job card for rate group determination"
would be acceptable.

If the- correction history section does not exist, the
modification must include it under a separate identifier.
This identifier would be "CHnnnnnn"; The format for creating
the correction history section is in STRAP 3.

1.3 UPDATE comments:

Most UPDATE comments are to facilitate the preparation of the LSD
document. These comments must be well written, in good English, and
they must be easy to understand. See STRAP 3 on modification deck
comments.

UPDATE comments (not intended for the LSD) can be used to explain
the reason for the modification when this reason would not be
appropriate to appear in the source listings.

1.4 DOCK

While it is not required to set up your comments so that DOCK can
extract them, you are strongly urged to consider this. In any
routine that does use DOCK, all modifications must continue that
practice.

Coding Guidelines - STRAP #9.4
Page 12

2.0 Design and Coding Practices

2.1 Structure

All routines are expected to conform to structured programming, top
down development rules. " Structured programming is a
philosophy of writing programs according to a set of rigid rules in
order to decrease testing problems, increase productivity and
increase the readability of the resulting program."

Before coding of the routine begins, several structured design
charts of the routine must be created. These designs should be
evaluated and the best one choosen. The book, Structured Design, by
E. Yourdon and L. Constantine describes how to create and evaluate
a design. If this procedure is followed, then your design will be
modular, simple, and straightforward. This design chart must be
reviewed by your team member or project leader. You are encouraged
to have several design walkthroughs for any major project.

The resulting program should be simple and straightforward. For
example, you must avoid programming that branches back on itself,
has multiple exit points or multiple return points. (Only one
entry-one exit per routine).
For example, this structure would be unacceptable:

IF(X EQ. 0) GO TO 20
A=7

10 CONTINUE

GO TO 99
20 A=23

GO TO 10

The only time that a convoluted or "jumping into the middle" code
can even be considered is when memory or time is extremely critical.
This is unlikely to be truly the case in any situation.

"More computing sins are committed in the name of efficiency
(without necessarily achieving it) than for any other single
reason—including blind stupidity. One of these sins is the
construction of a "rat's nest" of control flow which exploits a few
common construction sequences. This is precisely the form of
programming that must be eliminated if we are ever to build correct,
understandable and modifiable systems."

The "IF...THEN...ELSE" structure can be used to avoid multiple
returns in a function:

Coding Guidelines - STRAP #9.4
Page 13

LOGICAL FUNCTION ANSYES(INPT)
CHARACTER INPT*(*)
IF (INPT .EQ. 'YES') THEN
ANSYES = .TRUE.

ELSE
ANSYES = .FALSE.

ENDIF
RETURN

Indentation of higher level languages to show structure and levels
should be done whenever possible.

To promote and insure modularity, each module should be a separate
subroutine and have one entry and one exit point. Usually, the
routine should return any error condition to its caller. When the
routines are under one identifier in COMPASS, then the QUAL pseudo
op should be used to insure separation. See the COMPASS section for
further details.

2.2 User messages and diagnostics

User messages must be polite, concise, jargon free sentences.
Abbreviations must be avoided whenever possible. Cute remarks are
not allowed (i.e., "Sorry, Charlie"). As much information as
possible must be given to help the user find his problem. For
example, do not give the messages "CONTROL CARD PARAMETER ERROR",
"IN .LT. FIRST", or "FL EXCEEDS MFL"; instead use messages such as
"UNRECOGNIZED PARAMETER: LO", " IN (0354) IS LESS THAN FIRST
(1354)", or "MEMORY REQUEST FOR 120000 EXCEEDS THE 100000 MAXIMUM".

Existing error processing and message delivery routines, such as D00
and 6WM, must be used whenever possible.

2.3 Error detection, analysis, and processing

When testing user or operator input you must check for all legal
values and issue a diagnostic if the input fails these tests. For
example, you must not assume that if the input is not "YES" it is
"NO" or if input starts with an "N" it means "NO".

Similarily, you must insure that only legal input is given as
parameters to MACROS.

Output to users must be checked for reasonableness. For example, it
is doubtful that one could use 262142 CPU seconds in one job;
consequently, any routine that tells the user how many CPU seconds
were used could test for a reasonable value. This is especially
important for any accounting or authorization file deductions.

When adding entries, values, or codes to a CDC defined table,
diagnostic list, etc., you must either use the values that have been
allocated for installations by CDC or you must leave a sizable area

Coding Guidelines - STRAP #9.4
Page 14

into which CDC can expand. A typical method is to use negative
numbers when CDC is using positive numbers. Also, when this is to
be done, tell the Systems Supervisor so that an installation
reservation can be obtained from CDC.

This may cause some difficulty since CDC code tends to have many
hidden assumptions, such as the number will be positive, etc.
However, we must avoid the incompatibilities that will occur when
CDC expands their usage. Consequently, the extra hassle is worth
the time spent.

Whenever reasonable (and it is_ usually reasonable) you must include
checking on internally generated data. This includes tests such as
insuring a valid push/pop of a stack, insuring a value in a jump
vector is good, an index is within the dimension allocated, an
argument has a valid range, or a linked list is properly formatted.

This internal error checking is best started during the design phase
of the project. For example, a linked list could be designed so the
modules could easily tell whether an entry had been misiinked or the
links clobbered. Furthermore, this design analysis would also
determine whether the fragile linking process was truly necessary!

At some module levels it is not practical to do internal
checking—you must depend upon earlier checking. However, you must
design with the idea of always testing and eliminate those tests
that consume too much resource.

For example a routine that packs 'n' characters into one word should
check that 'n' is not bigger than the number of characters that will
fit in a word. Also, the termination value on a DO loop could be
checked for being within an array if the loop variable is used to
index into the array. However, it is not practical to check every
reference to the array for being within bounds.

No code should modify itself unless there is no other way to
accomplish the task. With PP's because of the restricted memory
space and registers this does become necessary. However, for CP and
Interdata code this is seldom (if ever) absolutely necessary and
will be permitted only on a case-by-case "prior approval by the
project leader" basis.

Counted loops (like DO loops) that are supposed to exit before the
count is exhausted must include code for the case when the count is
exhausted.

No infinite loops should be written. All loops should have a finite
termination within a reasonable time. In a few cases, a loop may
depend upon some outside action to terminate it (the error flag
being set, for example). It is better to abort the job or the
system than loop forever. A system crash is preferred to an
infinite loop because users are notified more quickly about a
problem and it is easier for the crash analyzer to determine what

Coding Guidelines - STRAP #9.4
Page 15

happened. Also if we ever develop an automatic restart process, it
will probably be initially done based on the occurance of a crash.

All entries to error routines or system crashers must be such that a
dump can show the precise caller and reason. For example, FORTRAN
code with a number of "GO TO 999" statements where 999 is the error
section is not acceptable unless there is some error index that will
uniquely specify were the error occured.

2.4 Copyright

New routines must contain, at the beginning of the first program, a
copyright statement. This statement must read: "COPYRIGHT year,
MICHIGAN STATE UNIVERSITY, BOARD OF TRUSTEES." where year is the
year when coding started. This should be among the first lines you
write when starting to code a new routine.

If a routine is extensively revised, it must include the copyright
statement. If the routine already has a copyright statement by MSU,
then the new year should be added to the year list (do not remove
the original year).

2.5 UPDATE common decks

UPDATE common decks used between program libraries should be placed
on the COMDECK program library. The creation of general utility
routines is encouraged. These should also be placed on the COMDECK
PL. Routines placed on this program library must conform to the
conventions stated there (and in STRAP 9) when applicable. For
example: the DOCK comment style must be preserved, the register
usage must be followed, etc.

It is expected that project leaders will take the extra time to
cause common decks to be created when they recognize a general
utility appearing in their group's code.

3.0 Symbols and Names (including routines, variables, macros, etc.)

3.1 General naming rules

The appropriate choice of names allows for easier comprehension of
the code. However, you must be very careful about the names you
choose; otherwise, you can create confusion, increase your debugging
time, and create maintenance problems for those that follow.

Examples:

1AR and IAR are a very poor choice of names because it is easy to
confuse the "1" with an "I". Also, "ONE" and "0NE" would be easily
misread if the "oh" were not slashed.

Coding Guidelines - STRAP #9.4
Page 16

A branching macro named "NUMTEST" is to test whether a character is
a number. You might expect it to branch if character was a number,
but you are not sure and could easily be wrong! A better name which
would not be ambiguous should have been chosen.

Also suppose two flags were defined: DATAFLG and ERRFLG. DATAFLG
has zero if there is data present; ERRFLG is non-zero on an error.
The testing of these flags would soon become confusing because of
their opposite meanings on a zero test.

Consider, also, the symbols "FETP" and "FNTP" which can be easily
read as FET Present, and FNT Present. However, the bit is zero if
the FET (or FNT) is present. The sense of both bits were kept the
same, fortunately, but the symbol name chosen was backwards since it
is usual to associate the set (or 1, or non-zero) condition with
true.

The previous example also illustrates another problem that must be
avoided: There is only one character difference between the two
symbols. A mistake that replaced the "N" with an "E" will create a
bug that may be difficult to find.

The eye has a tendency to see what it expects to see. What it
expects to see is influenced by the surroundings. Consequently,
symbols must be chosen to maximize their differences.

To minimize the problems illustrated above the following rules are
to be followed when creating symbols:

a) Meaningful mnemonic symbols must be used; words should be
spelled out (correctly) where possible.

b) Symbols must differ in at least two characters, preferably
three; one of the differing characters must be the last
character (if there is only a difference of two).

For Example:

Unacceptable pairs Acceptable pairs

W.FETXYZ W.FETXYZ
W.FNTXYZ W.FXYZ

ABCX ACBX
ABCY ABYC

LETCRUP ABCDEFX
GETCRUP HIJKLMX

Coding Guidelines - STRAP #9.4
Page 17

c) If it looks like a text symbol (see below) then it must
fulfill the meaning for that style. For example: W.xxx must
be a word offset in a table; V.xxx must be a mask based on
starting (right-most) bit and length; Y.xxx is not used alone
as a shift count, etc.

d) Symbols that name flags or test conditions must be named and
tested so that a true condition is a "1" (or non-zero) and a
false condition is a "0" (or zero). That is, if a bit is zero
when a file is busy and one if it is not, then it should be
called a not busy flag, (or bit), or complete bit, or some
similar name.

e) Macro names that test and jump or test and set a condition
code should be named to indicate when they jump (and that they
jump) or when the condition code is set to a one. For
example, "IFNUM" or "MTRDIEIF" not "NUMTEST" or "KILLMTR".

f) Because of the problems with 63 vs. 64 character set, the use
of colons in symbol names must be avoided.

3.2 Symbol usage

Any program in a high level language that does not have a text
facility (like FORTRAN) must have a COMPASS routine that establishes
system text symbol values in COMMON blocks for the high level
routine to use. Or, alternately, the high level routine can call
upon a COMPASS program to extract the value.

A set of similar symbol definitions must be grouped together. For
example, all symbols for direct memory, all constants for accessing
a specific table, etc. Also, symbols used throughout a program (or
those that might be) must be defined at the start of the routine.
Symbols used only in one place, such as to define a table, should be
placed just before they are used.

Only one symbol name should normally be used for a location, or
variable (this does not include the D.TW, etc. names for PP direct
memory). Therefore, EQUIVALENCE in FORTRAN or similar assignments
in COMPASS must not be done unless there is a valid reason. Since
space is least available in PP memory, most of the valid reasons
will occur there. See the COMPASS section for further restrictions.

Coding Guidelines - STRAP #9.4
Page 18

4.0 UPDATE Conventions

4.1 Deck Resequencing

Resequencing must not be done unless there is nearly a total rewrite
of the code. It is also possible to resequence a deck if the deck
name must be changed and there is no one else working on changes to
the routine (including CDC). Resequencing should be avoided since
it causes the identifiers in the listing and the correction history
to be lost.

4.2 UPDATE Abbreviations

Any UPDATE abbreviation should not depend upon a previous update
control card. For example:

*D CIO.359,370

is fine. However:

*D 359,370

is not allowed because it depends upon a previous control card to
set the deck name. This is done to prevent possible errors when
someone (such as the originator) slightly modifies a correction
deck.

Update abbreviations for the directives are allowed.

4.3 Correction Deck Structure

The correction identifiers for UPDATE should include your initials
for the first three characters and then some mnemonic for the
correction. For example:

•IDENT,VMSADF

(See STRAP 3 on modification decks for further details and
examples.)

However, the texts have unique identifiers starting with a slash
followed by the deck name. This structure should be preserved as
much as possible. Consequently, the modifier's initials should be
appended to the end of the standard identifier; only the last
characters of the deck's name should be deleted when necessary to
create a unique identifier. For example:

*IDENT /CPAVMSST

This would be a correction identifer for the Control Point Area text
deck written by a person with the initials VMS; the characters ST
might have some meaning about the modification.

Coding Guidelines - STRAP #9.4
Page 19

*IDENT /MTRCOJSF

This would be a correction identifier for the MTR communication
tables (/MTRCOM); the 'M* is deleted in order to fit in the
modifier's initials.

The correction deck must end with the proper "*COMPILE" control card
for that deck.

One IDENT (or set of IDENTS) should be used for one modification or
correction. For example, the ident JSFRATS could be used for the
modification to install the rapid access service. However, if this
was too extensive or extended over several PL's, then JSFRATS1,
JSFRATS2, etc. could be used.

4.4 Common decks

The use of common decks is encouraged. This use is especially
important for COMMON storage declarations, common procedures, etc.
However, the use of the common deck must be well documented as to
its beginning and end as well as its purpose.

Calls to common decks must have cards preceding and following them
such as:

* COMMON DECK ABC USED AT *+l
*CALL ABC
* END OF COMMON DECK ABC AT *-l

4.5 *YANK Identifiers

If a modification is being removed with a YANK, all code under the
identifier used for the YANK should relate only to YANK. That is,
if at some later time we wish to undo the YANK by YANKing the YANK
ident, we should not also lose unrelated code.

Frequently this means that the YANK is done under a separate
identifier; however, if the YANK results in unusable code, then the
yank identifier should also include the necessary code to make it
usable, [usable does not mean bug free].

4.6 Miscellaneous

Please refer to STRAP 3 for additional UPDATE restrictions based on
installation considerations.

For example:

1X4
AX4
BX7
BX3
BX7

X7-X3
59
X4*X7
-X4*X3
X7-X3

Coding Guidelines - STRAP #9.4
Page 20

5.0 COMPASS Conventions

Compass always takes longer to correctly code, debug, and maintain than
higher level languages. However, it does currently offer the possible
advantages of smaller code, faster executions and flexibility. Do NOT
use Compass if these are not needed. Use some higher level language (if
available).

5.1 General Guidelines

5.1.1 Be clear

All COMPASS code must be straightforward and simple. Fancy
tricks to save a few microseconds are very, very seldom worth
the time to debug and maintain.

MIN WHEN x3/x4,lt,x7
VS. BX7 X3

MIN DONE

Both of these will end with X7 having the smaller of X7 and
X3. While the code on the left is faster on a CYBER 175 and
it might take less memory, it is definitely not worth the
cost of confusion, maintenance and debugging except in very
rare circumstances.

Furthermore, tricks to avoid NOP's such as SX3 A3+0 must not
be done. Again, it is not worth the maintenance cost (a
future modification might alter the instruction placement).

There exist some obscure algorithms on the COMDECK PL. This
is the only place for this type of code since the maintenance
and debugging cost can be spread over a number of projects.

Before the introductory comments on a routine or module,
place a SPACE card with sufficient line count to insure that
the comments are all on one page (or use a TITLE card).
Also, the last introductory comment line must be separated
from the code.

When a table is created that uses the ordinal of the table to
obtain an entry, then the LOC pseudo op should be used to
show the table ordinal in the listing. Always set "*" back
at the end of the table (e.g., LOC *0).

When modifying CDC code for installation into our system,
there may be times when CDC implicitly assumes a table
structure. For example, there may be a "LDD D.Z1+3" to

Coding Guidelines - STRAP #9.4
Page 21

obtain the number of the current word pair in the FNT. The
best method of installing this CDC code would be to change
the instruction to "LOADFLD D.Z1+C.FRBORD,FRBORD"; however,
this may be impractical because of the number of such
changes. An alternative is to place ASSUME's at the
beginning of the program which would document the
dependencies.

5.1.2 Be careful

There have been a number of problems recently when coders
forgot that a_ value (such as a line count) could become
greater than 2 -1. When this happens the set instructions
do a sign extend (or truncate the value).

When doing an indexed jump (i.e., JP B2) you must insure,
whenever possible, that the jump is within range. You should
also leave some trace as to the last value used on the jump.
That is, store the register before the jump. This will help
the person analyzing the crash know whether the jump value
was good.

A similar problem can occur with linked lists. It is quite
possible for some bug to cause a PP to alter a link or for
another part of your program to incorrectly alter a link.
Consequently, you must include validation tests when you move
along a list or use values from a list.

For example, you might design a linked list with forward and
backward pointers. Then, as you move forward along this
list, you should check to insure the backward pointer points
to the location you came from. Another possibility is to
check a known value in the data (supply redundancy). The
verification of the PF flag in the RBT, for a file whose FNT
says it is a PF, is an example of redundancy checking.

If the CPMACTX macros are available, a routine written in
Compass must have entry registers specified by the EREG
Macro, return registers specified by RREG, registers used
specified by UREG, and routines called specified by CALLS.

Macros must be used to generate tables so that a new table
entry simply consists of a simple macro statement. The only
exception is when a table entry can be created by a CON or
DATA pseudo op. (There is a small subset of tables for which
this is not true, but they will be handled on a case-by-case
basis).

Always explicitly state whether a byte or a constant is to be
used as a test value. Frequently, one will forget to specify
a byte, and the default constant assumption will be wrong.

Coding Guidelines - STRAP #9.4
Page 22

5.2 General in-code comments

Accurate line-by-line comments must be placed there when the code is
written, not after debugging is finished. The comment on an
instruction line should refer only to that instruction, do not
continue the comment onto the next instruction line. In case a
higher priority project interrupts your work, then it will be
possible for you or someone else to pick it up several months later.
(If you don't know what you are doing, you have not spent enough
time designing. Go back and complete the design before you begin to
code.)

NOTE: This does not mean that every line must be commented. In
fact, every line must not be commented. If good global narrative
comments are provided and modular coding is followed then in-line
comments will be much less.

As a guide-line:

1. All jumps and tests must be meaningfully and concisely
explained. However, it is not necessary to explain the
computer instruction. That is, for "NJN ALPHA" the comment
could be "JUMP IF FILE NOT BUSY"; you do not need to say "IF
FILE NOT BUSY THEN GO TO ALPHA" or "IF NONZERO THEN FILE IS
NOT BUSY GO TO ALPHA."

2. All storage locations must comment on what is stored there.

3. All symbols assigned values through EQU's or SET'S must be
commented.

4. Except for trivial cases in higher level languages all the
variables (except temporaries and loop counters) must be
commented on at the beginning of the program.

5.3 Global Restrictions

The "*" symbol or similar self-reference symbols must not be used.
This means that code such as:

ZJN
LJM

*+3
NOTHERE

o r HH SA1
NZ

Bl
X I , *

must not be done. Similarily 'IF' tests, 'ECHO* ranges, 'DUP'
ranges, etc. must have labels on them. They must not be bracketed
with unnamed termination or have a counted range. The only
exception to this prohibition is for spacing in a BSS, for example:
"BSS D.PPONE-*."

Coding Guidelines - STRAP #9.4
Page 23

RMT code must have a name and be assembled by the named HERE
request. The ending RMT should also be labeled and specified as the
end.

When making system requests you must use a macro if one exists. For
example, the CPSTAT macro must be used instead of making an "SYS 3"
RA+1 (or SYS=) call. Note that a macro exists if it is on any text.
You can not avoid the macro because it does not exist on the text
you are using.

For all new routines (or major rewrites of old routines) the
location field must start in column 1; the operation field must
start in column 11; the address field must start in column 20; and
the comments field must start in column 36. These are the standard
columns. However, any modification to a routine with a clearly
defined convention other than 1, 11, 20, and 36 must follow that
routine's convention. If the entire routine is greatly jumbled,
then the standard convention should be followed even if three or
four lines around the modification are consistent. Exception; The
operation field for a structured programming macro (WHEN, ORWHEN,
ORELSE, DONE, LOOP, WHILE, etc.) should begin in column 9 for the
first level and column 10 for the second level. This will allow a
small amount of indentation to visually bracket the code.

Display coded data must never be given in octal. For example, "ZRO
EQU 2R00" not "ZRO EQU 3333B".

Numeric data, whenever possible, should be given in its natural
format. If it is not possible, a comment must describe its natural
form. (Natural form means, for example, using 1.35 not its floating
point octal equivalent.)

Expressions should be used when they will clarify an operation. For
example, "LX2 24-2" would be used instead of "LX2 22" if the shift
would have been 24, but the register was already shifted by 2. Of
course, symbols would be even better. ("LX2 59-Q.BIT1+Q.BIT2").

No address constants can be used. That is, the "STM 1357", "LDD
25", or "SA1 1" type of instructions are not allowed.

There may be no Compass warning error diagnostics in the routines
being installed. This means that any modification must include
removing warning errors even if that modification did not cause them
to occur.

Loop tests must terminate with the most inclusive test possible.
For example, on a postive, counting down to zero, loop where the
test "NZ B3,L00P" could be used to execute the loop; "GT B3,BO,LOOP"
would be better because it will terminate when B3 is minus—even
though this could "never" happen.

Coding Guidelines - STRAP #9.4
Page 24

5.4 Symbol definition and usage

Symbols roust be used to describe and to reference the length, width,
byte position, bit position, etc. of each entry in all tables that
have more than one entry per word. This symbol usage must be such
that if an entry within a table is moved, a reassembly of the code
will cause the reference to be correct.

Occasionally, significant time and development can be saved by
implicitly assuming the position and size of an entry. When this is
done, the ASSUME macro must be used to mark this assumption.

However, it is prefered to not make any assumptions.

Symbols must be used in instructions or table entries to convey
meaning and provide cross reference information even when they are
not expected to change.

For example:

EQPSTAT EQU 1300B equipment status
NEWPAGE EQU 1RT top of form

Neither the equipment status nor the forms control for top of form
are likely to change. However, by using symbols it is much easier
to find all references to these constants. Also, experience has
shown that some "unchanging" symbols do, indeed, change! Note that
this does not mean the symbol for the top of form should be used in
a DIS pseudo op. However, a micro could be defined and used in the
DIS. (It is expected that micros will someday be cross-referenced;
also it is much easier to change a single micro definition.)

When symbols are defined, they must be defined in terms normal for
that symbol.

For example:

Y.CMADDR EQU 17 NEWPAGE EQU 1RT

not or not

Y.CMADDR EQU 2IB NEWPAGE EQU 24B

Also, a comment explaining the symbol must be given.

Coding Guidelines - STRAP #9.4
Page 25

5.5 Scope text symbols

Scope text symbols help clarify the code, improve flexibility, and
provide the means to obtain a global cross reference by symbol and
routine throughout the system. Table additions to the text must use
the FIELD and WORD macros. Mew tables, etc., must follow the
current conventions in this STRAP. (See below)

Most text symbols have a prefix code followed by a period (SC.DSTF,
for example). These prefix codes have a specific meaning. Symbol
names with prefixes that conflict with these meanings must not be
used:

5.5.1 Symbol conventions to reference table entries (bit positions
are numbered right to left, 0 to n).

W. - The word address
C. - The byte address within the word (12 bit

bytes). Bytes are numbered left to right, 0 to
4. If a field crosses a byte boundary, the
value of the C.xxxxx symbol is the lowest
numbered byte.

S. - The bit position within the byte
Q. - The lowest (rightmost) numbered bit position

within a 60 bit word for that field.
Y. - The width of the value. This should be used

(along with the DECMIC pseudo op) to determine
the maximum value for the entry.

V. - A mask that will isolate the value (based on
position and width) relative to a byte.

P. - The actual absolute address (or unsealed
absolute address) that points to a table

SC. - The scale factor for addresses that need to be
scaled

T. - An absolute table address.
LE. - The length (in CM words) of each entry in a

table
L. - The total length of a table

(Note that in some cases L. is used instead of
LE.; however, future use must be as described
above.)

5.5.2 Other text symbol conventions:

AB. - Job card errors (obsolete)
CC. - Connect codes
CE. - Function codes for M.ICE monitor requests
CF. - CP.LISP function codes

Coding Guidelines - STRAP #9.4
Page 26

CH. - Pseudo channel numbers
CX. - Corridor requests for CPU monitor
DT. - Device type codes
EC. - ECS access codes
FDB. - Parameter codes for the FDB macro
F. - Flag values (i.e. F.ERxxx and F.SSxxx)
I. - Instrumentation Table reference
IL. - CPU monitor interlock table offset
10. - CIO function codes
IP. - Installation parameters
IT. - 1IT function codes
M. - Monitor requests made by PP's
N. - Counts and numbers of things
0V. - Display code value of PP name
0. - Stack processor order codes
PF. - Permanent file manager function codes
PH. - Phase symbols
RA. - Obsolete symbols to refer to the lower part of

a CP program's memory
R. - PP resident routines or symbols
SR. - Source codes; input/output destinations
SS. - Swap states
TP. - 1TP function codes
WS. - Wait states for CPUMTR EXEC tasks
WT. - Wait states Hustler jobs
XJ. - Exchange package words
XT. - Comdeck name

5.5.3 Table prefixes in symbol table

Characters to the right of the dot are frequently used to
identify the table to which a symbol refers. Any symbol
added to an existing table must use the prefix defined for
that table. A unique prefix should be chosen for any new
table added to the system. The following is a partial list
of current prefixes; if you plan to add another prefix, you
should first look thru the 'U.' symbols in the cross
reference listing of a text to insure that the prefix you
pick is unique.

•APF - APF Table
.CP - Control point area
.CS - CPSTAT return block
.DCT - Disk controller table
.DC - Disk controller table entries
.DFB - Dayfile buffers in CMR
.DF - Dayfile monitor requests
.DIR - Library tables
.DLL - Disk label protection

Coding Guidelines - STRAP #9.4
Page 27

.DST - Device Status Table (a device is an RMS disk)
•EC - ECS partition numbers
•EF - Code value for ECS FNT's
.EP - ECS partition word
•ER - Error codes
.F - FNT entries
.FD - FEDATA return block
.FDB - Permanent file definition block
•FET - FET entries
.FNS - FNTSTAT return block
•H - Frequently for Hustler pool table pocket entry
.IN - Installation area
•JS - Job scheduling
.LB - Disk label pointers
•MC - Monitor Communication (between CPU and PP)
.PFC - RBTC entry
.PFD - PFD entry
.PFI - Installation area within RBTC
.PP - PP communication area
.RA - Words 0-77 of control point FL
.RB - RBT bytes
.RBR - RBR table
.RBT - RBT entry
.RWPP- PP disk I/O communication word
.ST - Stack request
.SV - Miscellaneous save area in ECS pool entry
.T - Tapes table entry
.US - User table

5.6 General pseudo-op usage

5.6.1 DATA and CON usage
The DATA or CON pseudo ops should normally be used only for
constant data (data that is not altered during the execution
of the program). It is usually better to always put values
in changing locations rather than depend upon preset load.
If all values are set during execution, then the routine can
be more easily be made serially re-entrant. Specifically
"DATA 0" must not be used if some value is to be stored there
later. "BSSZ 1" should be used instead.

If DATA item must be altered during execution, then it must
be commented as to the various values it can assume and where
and why the setting takes place.

There should only be one piece of data for each DATA or CON
pseudo op.

Coding Guidelines - STRAP #9.4
Page 28

5.6.2 BASE and CODE usage
The BASE or CODE pseudo ops must not be used unless truly
necessary. When used, they must be heavily commented and
used only in a brief area. The normal BASE and CODE are
always assumed (decimal base and display code for CDC
computers).

5.6.3 COMMENT usage Any program that is placed on the dead start
tape (or other library tapes) must include a COMMENT card
giving a short description of the program. This will make
any ITEMIZE of the tape more meaningful. This COMMENT should
precede any copyright comments (including the one in the SST
macro).

5.6.4 VFD usage
The VFD pseudo op should not fill more than one normal word.
That is, the maximum for one VFD in PP code would be 12 bits;
however, if this were setting up a word to be written to CM,
then it could be 60 bits.

The VFD pseudo op must not be used where a CON or DATA pseudo
op can be used.

5.6.5 USE, ORG and other block counter operations
Pseudo ops that alter the block counter, such as USE and ORG
should be used carefully. When they occur outside of macros
or common decks there should be a reset to the base block;
inside there should be a reset to the previous block.

These pseudo ops should normally be used to set up data areas
at the beginning of a routine or to allow buffers to
overwrite initializing code. They must not be used to flip
between code blocks several times within a page. REQ is a
current example of what not to do.

The main concern here (as elsewhere) is to prevent tricky,
obtuse, complex code.

5.6.6 LIST options
Compass list options should be used to display the contents
of any macro generated table entries or tables now being
assembled with a HERE pseudo op. Usually a "LIST G" or "LIST
D" is appropriate. Also, see section 5.8.1.

Coding Guidelines - STRAP #9.4
Page 29

5.6.7 QUAL pseudo-op
The QUAL pseudo op must be used with care. Properly used it
can ease maintenance, prevent bugs, and insure modular code.
Improper use can just create more confusion.

QUAL must be used on higher level modules (or subroutines)
within a program or routine. This will insure that there are
no entries or references within a module that are not
explicitly stated. Only the entry point would be a global
symbol. Small subroutines should be grouped with one
qualifier under their parent module.

A qualifier before a symbol "/SUB1/LOOP" must almost never be
used (nor can a sequence of QUAL's to accomplish the same
thing be used). That is, global symbols must be globally
defined (preferably at the beginning of the program -
subroutine entry points, of course, cannot be). There exist
some CDC routines where this prohibition cannot be followed.

The macro's SUBRT and ENDSUB must be used (when available) to
specify the start and end respectively, of a subroutine.
These will cause the appropriate QUAL's to be generated.

Some examples of where qualifiers should be used:

To separate individual functions grouped under one
COMPASS IDENT (see SYS and PFU). In this case all
subroutines local to a given function would be
qualified under that function; subroutines
available to all functions would have globally
qualified entry points.

To separate initializing code which will be
overlayed from the non overlayed code. In this
case there must be no reference to any code within
the overlayed section from outside (except for the
entry point).

In summary QUAL's are required to help insure modularity by
helping to prevent convoluted code and insuring that improper
references are caught early in the debugging of a modification.

The COMPASS assembler program is an example of how QUALs must not
be used. This is because each few lines of code has a QUAL PASS1
and and then QUAL PASS2. This adds to the already difficult
process of understanding what is going on.

Coding Guidelines - STRAP #9.4
Page 30

5.7 Macro definition (including OPDEF, CPOP, PPOP, etc.)

5.7.1 General

The intelligent definition and use of macros is encouraged.
Macros should improve readability, reliability, and flexibility of
your code. Macros used throughout a program or subroutine must be
defined at the beginning of the routine. If a macro is used in
only one place (defining a table for example), it must be defined
just prior to its use.

The sections on comments, symbol names and general coding
practices apply to macro definitions. (Both the macro names as
well as their parameters). For example; the parameters must be
completely verified; "NO" should not be assumed if not "YES".
Condition parameters must be "ZR", "MI", "PL", "NZ" not "Z", "M",
"P", "N" respectively. Value relationships must be EQ for equal,
LT for less than, GT for greater than, GE for greater than or
equal to, and LE for less than or equal to.

When a macro is placed in a text, it must be preceded by the
appropriate LAB.MAC call. This will keep the cross reference map
up-to-date. If your program has many macros defined, the use of
LAB.MAC is encouraged (required if you have very many).

The use of MACROE (with meaningful parameters) instead of MACRO is
encouraged. For example:

"TABLESET RD=1, OP=1, WR=0, JUMPOPENRD"
is much clearer than

"TABLESET 1,1,0,OPENRD".

When you define a macro you must not be inconsistent with existing
general practice and text macros unless the practice is being
phased out (probably it will be counter to STRAP 9). For example:
testing and jumping macros give the jump address in the address
field; consequently you must not define a macro that will have the
jump address in the location field.

When defining a macro, especially for a table entry, try to get
the actual code generation into one compass statement. This will
reduce the number of lines generated for the macro call. If this
is not practical, a "LIST -J" can precede the table to reduce the
size of the listing (put a "LIST *" after the table).

Coding Guidelines - STRAP #9.4
Page 31

5.7.2 Things you must not do with macros:

The function of any existing op code, pseudo op, or text macro
should not be redefined. PP channel instructions are an
exception. Other exceptions may be allowed only if they do not
significantly alter the external original process and your project
leader approves in advance .

Within the macro definition, parameter names must be used
explicitly. ";A" type of parameter references must not be used.

Macros, as a general rule, should only use registers named as
parameters (unless they call routines). However, it is
permissible at the beginning of the routine to declare a register
"off limits" and then use it within the macros. WARNING: CPMACTX
operations will frequently use X5 as a scratch register if no
scratch register is specified.

5.8 MACRO usage

Modifiers of code must, at least, follow the existing code's use of
macros. That is, if the original code uses a macro, then you should
follow that usage.

If you notice a repeated sequence that would be improved by a macro, then
a new macro can be defined and used. In general, you should alter every
occurrence of that sequence to use the new macro. However,
considerations such as check out time, the extent of the original
modification, etc. may alter this decision.

5.9 CDC Central Processor Coding

When writing in COMPASS for the CPU these guidelines should be followed:

1. When the CPMAC User's Guide is available, then the structured
programming macros, entry/exit macros, description macros, etc.
should be used. EXCEPTION: The WHEN/DONE, LOOP/REPEAT, etc.
blocks should not span too many lines of code.

2. Unless there is a clear, compelling reason all subroutines must "be
entered with a return jump and exited through the entry. The
technique of using a B register to hold the return address and
leaving the subroutine by a "JP Bn", for example, must not be
done.

3. The use of multiple entry subroutines must be closely examined and
clearly justified. Since this leads to many confusing
complexities (most of which are prohibited), it rarely can be
correctly used.

Coding Guidelines - STRAP #9.4
Page 32

4. If it is better to reference a location by using the contents of
another register, you must still include a cross reference entry.
Usually you can avoid this by using the "=reg" pseudo operation.
You need only one reference for all code in the immediate
vicinity.

5. The naming of registers in CP code must be avoided since it
frequently confuses the person modifying or debugging the code.

There may be exceptions to this prohibition, but they will be
handled on a case-by-case basis.

6. The instruction must always appear by itself in the operation
field; the unpack and normalize instructions are the only
exceptions since two registers receive data. For example:

are

are

NZ,X1
PX6,B7

ALPHA
X5

not permitted but

UX5,B7
NX1,B7

allowed.

X6
X6

7. Entry points to subroutines should be such that an immediate error
is given when the entry point is jumped to without an RJ having
been done. This error must show where the problem occurs. This
can be accomplished by a PS, a "BSSZ 1", or a "JP 400000B+*".
This does not apply to routines that have no mode error processing
available. (IRCP for example.)

The "PS" instruction would seem to be the most useful since it
will reset the sub-sub title.

8. The explicit use of BO should not be done when there exists an
alternative instruction that reads better. However, you must use
BO when it is necessary for a complete comparison statement. For
example: "NZ B3,JMP" should be used instead of "NE B3,B0,JMP".
However, "GT B3,BO,LOOP" must be used instead of "GT B3,LOOP", and
"LE B3,BO,EXIT" must be used instead of "LE B3,EXIT". If the
program is to jump when B5 is plus, then use "PL B5,JMP"; however,
if you are coding a loop that loops through a table from "n"
through zero, then "GE B5,B0,JMP" should be used.

Of course, in most cases, this entire problem can be avioded thru
the use of the JUMP, WHEN, REPEAT, etc. macros.

Coding Guidelines - STRAP #9.4
Page 33

9. Bl should be used to hold a constant one if this is desired. Some
older programs use B7; this practice must not be continued to new
programs. If you make small modifications to programs that have
another convention, then, of course, you should follow that
convention. The Fortran 5 library appears to frequently use B5 =
1.

10. All subroutines must use the "UREG", "RREG", "EREG" and "CALLS"
macros in the subroutine preamble if these macros are available.
These macros will be available when the CPMAC User's Guide is
available. This will allow machine verification of some parts of
the linkage.

11. The "LOCK" and "UNLOCK" pseudo ops must be used to protect
constant registers over a stretch of code. The interval before
which protection is required varies by the register types. B
registers are traditionally considered constant for a much longer
period than A registers. If an A register is to be constant but
its associated X register is not, then the A register should be
locked even over short ranges. This becomes even more important
if the A register was loaded "invisibly" through a macro. The
purpose of locking registers is to prevent a quick change being
installed that uses a register that it shouldn't.

5.10 CDC Peripheral Processor Coding

5.10.1 Direct storage usage

The direct storage locations between zero and 17 octal (D.ZO thru
D.T7) are used for temporary storage. This means that you must
not expect their contents to be preserved over several levels of
modules. This also means that if you are using a word in the
temporary direct cells for a word count to read or write central
memory, you must set that word as close to the actual read or
write instruction as possible. For example:

incorrect : correct :

SETK LE

•
•
•

MI D.

.FNT,D.Z3

(Code

FNT,D.Z3

altering FNT)

SETK
WRITEMI

•

•
LED.

.FNT
FNT,

,D.Z3
D.Z3

This will help prevent disasterous bugs when someone alters a
temporary and does not notice its later use.

In the PP barnyard, while all these words are temporary some are
more temporary than others. D.ZO is the most temporary, D.TO
through D.T4 are the next most temporary (their contents must not
be considered preserved over any PP resident request except a

Coding Guidelines - STRAP #9.4
Page 34

call to R.TFL), then comes D.Z1 through D.Z5 and finally the
remainder. The more temporary the word, the shorter the distance
you can consider it preserved without extensive comments. (Note
that a deadstart destroys D.ZO through D.Z5).

Note that D.ZO must not be used as the word count in a CM
read/write instruction. That is, although "CWM BUFF,D.ZO" will
work, it must not be used.

The temporary direct cells must not be renamed. In some existing
PP code D.TO is renamed CM and is used to read the contents of
central memory. This practice must not be continued to new PP
programs.

If any of the constant direct cells (such as D.PPONE, D.TR, etc)
are used in the program, they must be initialized at the start of
the program and left constant throughout. This will prevent a
modification making use of the cell before it has been set (this
can create a very difficult bug).

The non-temporary direct cells must be renamed to indicate their
use. There should normally be only one use in the program.
However, for separate functions or states it is permissible to
reuse a direct cell. The QUAL pseudo op should be used to
prevent misuse.

When naming direct cells, all direct cells used (explicitly or
implicitly) must be declared. This declaration must appear in
one place and be visible to the person reading the listing. The
declaration must be processed by COMPASS so that an error is
generated if the allocation is done incorrectly. This style must
be followed:

D.FNT

D.PPIRB
D.RA
D.FL
D.ESTFWA
D.CPNUM

D.PPONE

D.PPIR
D.PPOR
D.PPMES1

ORG
BSS
BSS
BSS
BSS
BSS
BSS
BSS

BSS
BSS
BSS
BSS
BSS
BSS

D.TWO
LE.FNT*5
D.PPIRB-*
5
1
1
1
1

D.PPONE-*
1
D.PPIR-*
1
1
1

has entire FNT
free space

has FWA of EST
has control
point number
free space

Note that there is only one ORG. Additional ORG's are permitted
only if you intentionally plan to overwrite.

Coding Guidelines - STRAP #9.4
Page 35

If multiple names for the same direct cell are used, it must be
clear how the cells were set. For example:

at the beginning of the listing:

D.FNT
D.FST
FSTFT1

BSS
BSS
EQU

5
5
D.FST+C.FXYZ

Then somewhere in the program:

CRD D.FST

and somewhat later occurs:

JUMP EMPTY,FSTFT1,ZR

This will require breaking the line of thought to pursue thru the
cross reference map exactly how and when FSTFT1 was set.
Debugging and crash analysis becomes much more difficult because
you have to remember extraneous details. The preferred sequence
would be to simply use:

JUMP EMPTY,FLD(D.FST+C.FXYZ,FXYZ),ZR

5.10.2 General practice

In PP code it is sometimes necessary to alter the assembled
instructions. When this is done, care must be taken to insure
that it is obvious that this is occurring and what instruction
will appear. Frequently, for example, a constant is stored into
an LDC instruction. When this is done, the following sequence
must be used:

NME LDC ** has relative location of FET
NMEFIL EQU NME+1

or if several known sequences are possible

RWIO 0AM **,CH read/write disk
* IAM BUFI,CH FOR READING
* 0AM BUF0,CH FOR WRITING

That is, if known, the instruction that might be placed there
must be noted in the comments.

When accessing a central program field length, the absolute
address can only be obtained just prior to the access. The
absolute address must never be stored. The ADDRA or LDCA34
macros must be used to compute the absolute address; the error
return must always be checked—even if it could "never" happen.

Coding Guidelines - STRAP #9.4
Page 36

When writing multiple CM words, remember it is possible to be
locked out of CM for a long time after the first word is written
due to ECS transfers. Consequently, do not set requests until
you are sure all of the parameters have been set. For example, a
PP communicating to a CP program needs to write two words in
central memory. The first word initiates the request, the second
gives some vital parameters. While it would be tempting to do a
CM write with a word count of two, this will not always work
since the parameters may be set long after the request is made.

All PP's must have a test to prevent their growing too big. The
CKPPLWA macro must be used to test for PP's loading within a
fixed area (e.g. below 7777) since it rounds the overlay length
up to a multiple of 5 words.

Not only should the end of the PP be tested, but also any parts
of the PP that cannot be overwritten by an overlay it calls. Any
PP routine that is modified which does not already contain this
test must have the test included as part of the modification.

Some existing PP programs first test whether one of its overlays
is already loaded and do not reload it before jumping to it if
this is true. This is a highly dangerous practice. It has
happened in the past that the test was not thorough enough and
the PP jumped into garbage. Consequently, you must be very sure
that this technique will save significant time and that there is
no way to design the functions to avoid this problem.

No code should assume P.ZERO has a value of zero. P.ZERO used to
have value of zero; it no longer does. Central memory location
absolute zero is no longer expected to contain zero. Certain
machine errors will cause the hardware to place error codes into
location zero.

All PP programs should begin with the STARTPP macro as the first
or second instruction executed (the first instruction may be a
jump to the initializing code). STARTPP will request CM access;
this should be terminated as rapidly as possible.

The "no-op" feature of the I/O instructions must not be used
except for the "DCN" instruction and, if the guide lines in
section 8 are precisely followed, the IAN,OAK instructions. This
feature must never be used for the FAN, FNC instructions since a
critical function may not be done.

A DPP or ABORT monitor request is made to terminate the PP
program; all interlocks must have been released before these
requests. Usually there should not be any code between one of
these requests and the LJM R.IDLE.

Coding Guidelines - STRAP #9.4
Page 37

5.10.3 New or significantly altered PP routines.

When a new PP routine is added to the system (or an old PP
routine's function is significantly altered), there must be an
entry added (or altered) to the /PPOV text. This entry will give
the PP name and its function. The standards noted in the deck
will be followed.

5.10.4 PP Macro Usage

The PP macros defined in the text should be used whenever
. appropriate (unless they have been declared obsolete). For
example: the LDK macro must be used when loading a text symbol
since its value may change (also, using LDK is encouraged because
it denotes a constant; not infrequently do people mistakenly
write LDN when they mean LDD and conversely).

The MOVE macro should normally be used only to move data. The
optional instruction should be avoided - It must not be a flow
changing instruction.

The ADDRA, LDCA34 macros should normally specify the error
address and allow non-error conditions to flow to the next
instruction.

Backward branches should insure that the proper jump (relative or
long) will be calculated; forward branches must use whatever
takes the least memory.

The macros defined in the PPMAC Users Guide should be used unless
clarity is lost. Of course, those macros declared obsolete must
not be used in new code.

6.0 INTERDATA coding

Some additional rules are needed for coding Interdata machines using COMPASS
and FETEXT. These rules arise for a variety of reasons: undocumented hardware
quirks, limitations of FETEXT and the loader, and problems that that we have
experienced.

6.1 Mechanics

Interdata code may be absolute or relocatable. The formats for COMPASS
IDENT's are as follows:

Coding Guidelines - STRAP #9.4
Page 38

Absolute assemblies:

IDENT name
ABS
FEPROG f wa,1wa,xferadd

constant definitions

xferadd
executable code

END

The ORG to fwa, and definition of the transfer address, are
done by FEPROG.
Relocatable assemblies

IDENT
FEPROG
ENTRY
EXT

name

xferadd
externals

constant definitions

xferadd
executable code

END xferadd
The transfer address is optional.

6.2 General restrictions

FETEXT and the loader place some additional constraints on the code:

. No relocatable IDENT may be greater than or equal to 8000lgbytes
since when the RX2 (relative addressing instruction format) is
used, the address field may be exceeded.

Coding Guidelines - STRAP #9.4
Page 39

Unlabeled RMT may not be used to generate code in relocatable
assemblies, since FEPROG uses it to round the IDENT to a multiple
of 8 bytes long. Labeled RMT is not restricted.

Labeled common may be used, but the programmer must ensure that
each block is an exact multiple of 8 bytes long. Names must be
less than seven characters long. There are no constraints on the
use of blank common.

Local USE blocks may be used, but must be padded to a multiple of
eight bytes, or assembly errors will result. Names of USE blocks
may not exceed six characters.

Absolute values must be defined before their first use. If this is
not done, unworkable code may result, without assembly errors.
External values must either be defined before first use via the EXT
pseudo-op, or may be prefixed by the "=X" modifier on each use.

6.3 Alignment problems

The ALIGN macro does BSSes until the origin counter falls on a 2-, 4- or
8-byte boundary. It is called by the .. and macros, as well as
data definition macros such as HWORD, WORD, and BLOCK. The following
code will not work :

LABEL
WORD 1234
WORD 5678

The .. macro will align to a 2-byte boundary, and the WORD macro will
align to four. Thus "LABEL" may not be the address of the first word.
The macro should be used instead with full word tables.

Here is some more bad code:

CELL
TAG

BR
BYTE
LDB

TAG
23
R1,CELL

Since the instruction macros do not do any alignment, TAG will be on an
odd boundary, and the machine will crash with an illegal instruction
interrupt when the LDB is executed.

Coding Guidelines - STRAP #9.4
Page 40

Any block of code following data definitions must begin with a or
.... macro call:

CELL BYTE 23
TAG

LDB R1,CELL

Problems of this type may be avoided by always using the ".." macro in
conjunction with labels — labels should never be put in the location
field of instructions. Note that the use of the ".." macro also aids
future modification.

6.4 Loading halfwords

On the 7/32, the LDH instruction extends the sign of the operand through
the upper half of the register. Therefore it should be used only on
signed values. LDHL must be used in other cases. Although in most
general cases LDH would work fine, using LDH for only signed values is an
excellent habit to get into — it can save much trouble.

6.5 Logical and arithmetic compares

The use of explicit CMP, CMPL, etc. instructions is not allowed. The
WHEN/ORWHEN/ORELSE/DONE or JUMP or LOOP/WHILE/REPEAT macros should be
used instead, for readability and terseness. One should beware of the
f o1lowing, however:

A careful reading of the 32-Bit Series Reference Manual will reveal
that the CMP, CMPH, and CMPI instructions do not set the condition
code the same way that CMPL, CMPLH, CMPLI, and CMPLB do.

This means that if you use the logical compares (which are faster,
and CMPLB has no alternative), you must avoid a following BGT, BLT,
BLE, BGE, BNM, BM, BP, or BNP. These jumps will work rationally
after CMP, CMPH or CMPI, but they are unpredictable after a logical
compare.

The jumps to use after a logical compare are:
BEQ branch if A ,EQ. B
BNE branch if A .NE. B
BL branch if A .LT. B
BNL branch if A .GE. B

6.6 BXH and BXLE

The index branching instructions do not work as you might think when the
signs of the index and limit are different. For instance:

If Rl=l, R2=l, and R3=-l, BXH on Rl will not branch, even though Rl
.GT. R3.

Coding Guidelines - STRAP #9.4
Page 41

If Rl=-2, R2=l, and R3=l, BXLE on Rl will not branch, even though Rl
.LT. R3.

Both of these instructions work correctly (algebraically) only when the
signs of index and limit agree , whether positive or negative.

Note that the BXLELOOP/ENDBXLE macros should generally be used in lieu of
explicit BXLE instruction loops. There may be times when the BXH
instruction is necessary, or when "tricky" coding is being done (such as
modifying the BXLE parameters explicitly), but these are generally shakey
and are to be avoided.

6.7 Register Conventions

The 7/32 has two register sets: set 0 is used in interrupt service
routines (ISR's) and SVC (supervisor call) routines; set F is used by
background tasks. Because of this separation, and because tasks only run
end-to-end, a task need not preserve any registers. However, there are
problems that arise because of subroutines that are callable by both
ISR's and tasks, and because of ISR's calling SVC routines.

6.7.1 RO and Rl

In an ISR, these registers contain the old PSW—destroy them, and
you can't return to the task that was interrupted. (The same
applies to RE and RF in SVC routines and certain ISR's.)

6.7.2 ISR's and SVC's

When an ISR makes a SVC request (such as REQTASK), some of its
registers will be destroyed. SVC routines must be guaranteed to
preserve RO through R4, at least. ISR's should generally save
their REQTASKs for the very end, when register contents are no
longer needed.

6.7.3 Subroutine Parameter Registers

Where possible, try to use R5-R8 or R9 for passing parameters to
subroutines. This is true for tasks in FREND, and is useful when
the subroutine call goes only one level deep. With nested
subroutine calls, this rule can be abandoned.

6.7.4 Scratch Registers

Since a task needs to preserve no registers, it can use all for
scratch. Subroutines should use RA-RF (with caution about RC) for
scratch, and others only if necessary—R9 first, then R8, etc.

Coding Guidelines - STRAP #9.4
Page 42

6.7.5 RC Problems

RC is universally used to hold the return address during a
subroutine call. To allow nested subroutine calls, the SUBR macro
stores RC at the front of the subroutine, and the RETURN macro
reloads it.

It is nice to be able to exit a subroutine by doing a conditional
branch to the contents of RC. This may be done, but only in short
& simple subroutines, and only with a warning in the subroutine
comments that RC must be preserved.

RC may be used as a scratch register, but only with a warning to
do no branches to RC.

It is best to avoid references to RC except through the SUBR,
RETURN, and CALL macros.

Since the SUBR macro defines only one cell to save RC in, any
subroutine which is called by both tasks and ISR's may exit only
by branching to RC—the RETURN macro must not be used. An
alternative is being developed.

6.8 Disabling Interrupts

Cells which are modified by both tasks and ISR's must be interlocked. We
do this by disabling interrupts temporarily in the task, using the
DISABINT and ENABINT macros. Some cautions about this must be observed:

- DISABINT should generally only be used in tasks. Note that this
macro becomes a no-op if interrupts are already disabled (it simply
saves the old PSW, clears the immediate interrupt and system queue
bits, and then ENABINT restores the old PSW), so it may be used in
subroutines called from both tasks and ISRs, but this use is
confusing and should be avoided.

Interrupts must be disabled only for the minimum period of time.
If two cells are modified in quick succession, it might be good to
re-enable interrupts between steps.

- For good interlock management, try to keep code between DISABINT
and ENABINT calls short, and straight-line. If a test must be
made, do it after the ENABINT. Never branch into or out of a range
where interrupts are disabled.

Coding Guidelines - STRAP #9.4
Page 43

7.0 FTN Coding Standards

All new programs must be written in FTN5; any FTN4 program that is modified
(except for minor changes) must be converted to FTN5.

7.1 Standard conforming

FTN5 programs should conform to the standard whenever possible.
Nonstandard functions are prefered over nonstandard statements. This
means, for example, that the AND and OR functions should be used instead
of the ".AND." and ".OR." bit operators.

7.2 Indentation

The structure of the FTN5 program must be shown by indentation. Two
columns should be used to indicate each level. Since FTN5 does not
automatically list the program with this indentation, your source code
must show it. Futhermore, any modification that alters the levels must
include changes to correctly show the new structure.

Statements within the range of a DO statement should be indented.

The ENDIF, ELSE, and ELSEIF statements are indented at the same level as
their associated IF statement. It is also usually beneficial to place a
comment after an ELSE or ELSEIF statement explaining more precisely what
is being tested.

Comments should be indented beyond the code in which they appear. That
is, comments should not alter the visual presentation of the structure.

In general, the visual presentation of the structure is very important.
Nothing should interfere with this presentation.

7.3 Symbols

Just as in Compass, symbols must be used when possible. This means that
PARAMETER statements should be used for array sizes, character constants,
etc.

7.4 DO loops

The "extended range" feature of DO loops must not be used. That is, no
DO loops should exit in the middle and then return.

Any DO loop that expects to be terminated by some condition other than
exhausting the loop count must still include code to handle the case when
the loop exits by exceeding the loop count.

The DO statement should be of the form "DO slab, v=elfe2[,e3]". That is,
there should be a comma after the statement number.

Coding Guidelines - STRAP #9.4
Page 44

The statement number that terminates the DO statement should be on a
CONTINUE statement. The CONTINUE statement should be indented to the
same level as the DO statement.

7.5 IF statements

The three branch IF statement should not be used.

The CASE statement should be mapped into the IF/ELSEIF/ELSEIF/ELSE
statements.

7.6 GOTO statements

GOTO statements should be used sparingly. Refer to the general comments
on program structure. GOTO statements should usually be used to code
structured programming constructs not available in FTN5. For example,
the GOTO statement can be used to EXIT a loop.

7.7 Intrinsic Functions

The generic name of the intrinsic function should be used whenever
possble. For example, use MAX for the maximum function instead of MAXO,
AMAX1, or DMAX1.

7.8 Diagnostics

All informative diagnostics must be eliminated whenever possible.
However, clarity is much preferred over eliminating informative
diagnostics. For example, it may be possible to avoid an informative
diagnostics by changing a constant from a Hollerith constant to an octal
constant, but to make this change would make the code more obscure;
therefore, it should not be done.

There should be no stray or unused variables.

As with COMPASS code, even unrelated modifications must clean up
informative diagnostics.

7.9 Subroutine usage

The use of LOCF subroutine must be avoided. This usually indicates some
design that is either too assembly language oriented or else some module
that should be done in COMPASS.

Coding Guidelines - STRAP #9.4
Page 45

8.0 General Practices

8.1 File manipulation

The proper interlock procedures must be strictly followed when
accessing, or destroying a file.

creating,

The two major processes which must be interlocked are: 1) finding a free
FNT entry to put a file with a unique name, and 2) obtaining exclusive
access to a file so that you can manipulate it or destroy it. Item two
has many variations in our operating system. Discussed below are flow
charts for these problems as they pertain to files assigned to a non-zero
control point.

Creating a file:

If the file needs a unique name (file at a control point, for example), a
search for a duplicate name should be done after the channel is reserved
to prevent two PP's from generating the same file simultaneously.

c start

search FNT,
noting free
slots and
duplicate
files

clear complete
bit of FNT to
insure file
is busy

Write new FNT --->
Drop CH.FNT

Coding Guidelines - STRAP #9.4
Page 46

Accessing a file:

To access a local file at a control point, follow the following sequence:

locate FNT

reserve
CH.FST

<--- no error ----

no
match ---->

drop
CH.FST

pause and
check error
flag

(drop
CH.FST

error

any non-counted
interactive
process must
include a pause
and error flag
check

(to terminate exclusive access, set the complete bit)

Coding Guidelines - STRAP #9.4
Page 47

Destroying a file:

Before destroying a file (zeroing its FNT), be sure to get exclusive
access. If equipment is assigned to that file, or an RBT chain is
present, be sure to deal with them before zeroing the file. Also, zero
the FNT in the proper order: word three, word two, then word one (or word
two, word three, then word one). Of course, this process should not
depend on there being three words in the FNT.

Some programs (1AJ, 1EJ, etc.) don't bother with CH.FST, etc., as they
are (presumably) the only program which might be attempting to access the
file in question. While this scheme does perhaps save time, employing it
deserves a (very) long, hard examination.

8.2 Use of the no-op feature in the OAN,IAN instructions

In addition to no-op DCN (DCNPSN) the no-op (unhangable) feature of the
OAN/IAN instructions (OANPSN/IANPSN) can be used to avoid hangup
situations:

code like
FCN
ACN
LDD
OAN
LDD
OAN
DCN

can hang if the equipment doesn't accept the 1st byte output (2nd OAN
hangs on a full channel). A DCN entered by the console operator doesn't
help because then the OAN is hung on an inactive channel. The channel
must be DCN,ACN by the operator to unhang the operation, and then the
program cannot detect what happened.

The above sequence also hangs if the equipment DCN's the channel betweer
the ACN and OAN. OAN's hang on an inactive channel, and it is unlikely
that an operator can distinguish a channel hung inactive from a channel
not being used.

Coding Guidelines - STRAP #9.4
Page 48

This problem has two solutions:
1) use OAM:

FCN
ACN
LDK word count
OAM
DCN
NJN error (not all data taken)

This requires data properly formated in memory.

2) use OANPSN:
FCN
ACN
LDD
OANPSN
IJM error
DCN

Either sequence allows operator to DCN a channel hung full, and will take
the error branch if it happens. Similarily, if the channel is
deactivated by the equipment, both sequences execute without hanging and
branch to the error routine. The case for IANPSN is virtually identical
(except replace "full" with "empty" and vice versa).

IANPSN and OANPSN sequences must be followed by a "IJM error" to detect
the failure condition. Obviously, this cannot be used if the equipment
deactivates the channel after data transfer (as happens on status
sequence for 7054):

FNC 0012B
ACN
IANPSN
IJM error

This cannot be used since the equipment will (legitimately) deactivate
the channel after the IANPSN instruction. Therefore, the PP cannot
determine if the inactive channel is correct or if it occured because the
operator DCN'd the channel.

FNC 0012B
ACN
LDN 1
IAM STAT
NJN error

(wait for channel to be inactive)

This is correct, as the controller will deactivate the channel after the
IAM. If the operator had to DCN the channel, not all the data would have
been transfered and the non-zero A-register would have indicated this
situation.

Coding Guidelines - STRAP #9.4
Page 49

8.3 Writing into ECS (or reading from ECS)

The ECS I/O process is described in 6SM 71. It should be followed. All
ECS access must be relative to a given partition.

8.4 Channels and Interlocks

If possible, only one channel or other interlock should be held by a PP
PP or task at a time (and it is usually possible). If it is necessary to
obtain two or more interlocks simultaneously, the second and subsequent
interlocks must be requested with refuseable requests. If a request is
refused, ALL interlocks obtained to that point must be released, and the
process restarted with the first interlock request (normally after a
short delay and a check of the error flag if appropriate).

8.5 Files

Scratch files should have four Z's as the first four characters in their
name. Any program may use a scratch file without concern for its
previous contents. (Files with five Z's are reserved for use by CDC)

Connected input and output files are named depending upon the character
set being used:

character
set:
DC
AF
BF
AS
BI

file
input
ZZZZIN
ZZZZIAF
ZZZZIBF
ZZZZIAS
ZZZZIBI

name
output
ZZZZOU
ZZZZAF
ZZZZOBF
ZZZZOAS
ZZZZOBI

All scratch files must be returned after execution.

8.6 Recovery

Any new features that implement new tables or fields in CMR or the
control point areas or add new file types, etc. must consider the
questions of recovery after a crash, of rerunning a job, etc.

8.7 Memory usage

In most cases memory is our most valuable asset. Don't waste it.
Frequently, this means using several overlays, using I/O buffers for
set-up code, etc. However, reliability, readability, and flexibility
must remain.

Coding Guidelines - STRAP #9.4
Page 50

8.8 Documentation

Documentation on modifications is expected to come with or soon after the
code. This will mean updating the appropriate SMD or writing a new SMD.
See STRAP 4. An M4 may also be written if you wish. If the SMD is not
in machine readable form and if the modification meets the qualifications
of an M4, then only an M4 needs to be written. See STRAP 11.

9.0 Summary

These conventions and practices, intelligently applied, should result in
flexible, reliable code. Rapid initial development is rarely required -
following these guidelines is usually more important.

WRITTEN BY: Richard R. Moore

(with comments and suggestions from the entire systems group)

MICHIGAN STATE UNIVERSITY

COMPUTER LABORATORY

SYSTEMS TASKS, RESPONSIBILITIES, AND PROCEDURES

NUMBER 10.1

Software Stir Procedures

January 22, 1978

1.0" INTRODUCTION

Problems with the MSU computer operating system are reported to the
Computer Laboratory by use of a Systems Trouble Internal Report form
(a STIR)- Any of these STIRs which refer to software problems are
sent to the Systems Programming Group (Systems). This document
describes the proceedures used internal to the Systems Group to track
the progress of software STIRs.

2.0 SYSTEM^ PERSONNEL INVOLVED

Three people in Systems are involved with a STIR at any one time.
These people are:

The STIR MONITOR
The STIR MONITOR'S duties are to keep a record of the
progress of all STIRs, and to produce reports containing
this information. This person is aided in this task by the
STIR ASSISTANT.

The STIR ASSISTANT
The STIR ASSISTANT'S duties are to handle all the paperwork
and actual information recording which goes with the STIR
process. This person keeps books containing all the STIRs
that have been through systems. This person follows the
STIR MONITOR'S direction.

The ASSIGNEE
The ASSIGNEE is the person in the Systems Group who will
actually do the work of isolating and correcting the
problem. This person has a large number of options as to
the action to be taken to correct the problem. These are
described in section 3-

3.0 STIR FLOW WITHIN SYSTEMS

This section describes in detail the paths a STIR may follow between
the time it is submitted to the Systems Group and the time that the
problem is corrected.

PAGE 2

3.1 NEW STIRS

All new STIRs go directly to the STIR MONITOR, who does the
following:

a) Establishes a title, routine, category, priority, and
number.

b) Makes an initial assignment.
c) Backs up all needed files on magnetic tape.
d) Writes the Systems STIR number on all documentation.
e) Attaches an acknowledgement form.
f) Routes the yellow copy, all documentation, and the

acknowledgement form to the ASSIGNEE.
g) Routes the other copies to the STIR ASSISTANT for

logging.

The ASSIGNEE should then analyze the STIR within 5 days. This
action will result in a positive acknowledgement of the
disposition of the STIR. It will be one of the following:

a) User error. The STIR is returned to the STIR MONITOR
with an explanation.

b) CDC bug. A PSR is written and returned with the STIR.
c) MSU bug. The attached acknowledgement form is detached

from the STIR and sent to the STIR MONITOR. Any needed
changes in routine name, priority, and/or category may
be specified on this form.

d) Inadeauate documentation. In this case the STIR MONITOR
will request the person who submitted the STIR to
supply any needed materials. If the submittor cannot
or will not supply what is needed, the STIR will be
rejected.

If the STIR MONITOR does not receive an acknowledgement from the
ASSIGNEE within five days, the STIR MONITOR should take any
steps necessary to get an immediate acknowledgement. These
steps could include talking with the ASSIGNEE, reauesting
support from the ASSIGNEE'S project leader , requesting support
from the Systems supervisor, etc.

3.2 CHANGING STIR RECORDS

A number of the pieces of information that the STIR MONITOR
records about a STIR may be changed to keep the record
up-to-date. These items are:

a) Routine name
b) Category
c) Priority
d) Description
e) Assignee

To change any of these items, the ASSIGNEE should send the STIR
MONITOR both the yellow copy and a note indicating the desired
change. The STIR MONITOR will instruct the STIR ASSISTANT to
change the records and make the change on the white copy. The
STIR MONITOR will mark the chanr •> on the yellow copy and return
it to the ASSIGNEE.

PAGE 3

Note that in the case of a re-assignment, the ASSIGNEE will now
be a diferent person, and the original ASSIGNEE will not receive
the yellow back.

3.3 ANSWERED AND FIXED STIRS

If the STIR is to be replied to or rejected, the yellow copy is
returned to the STIR MONITOR with a signed explanation written
in the 'reply box. The STIR MONITOR will log the reply, and
send the STIR to the STIR ASSISTANT, who will send the reply to
the submittor.

If the STIR has been fixed by a modification to the operating
system or one of the dependent products, the yellow should be
returned to the STIR MONITOR with the LSD and IDENT of the
modification noted in the 'reply' box. Note that this should
only be done after the modification has been installed.

The STIR MONITOR should monitor the LSD documents to be certain
that a yellow copy is received for each STIR listed as fixed.

If the STIR has been fixed by a modification, but is still to be
PSR'd to CDC, the LSD and IDENT of the modification should be
written in the reply box, and then the STIR and PSR sent to the
STIR MONITOR. The user will be notified that the problem has
been corrected, and the PSR will be sent to CDC.

3.4 PSR'S

A PSR (.Programming .Systems Jgeport) is CDC's equivalent of a
STIR. It is used to report problems with software which is
supported by CDC.

When a STIR is to be PSR'd, the completed PSR form and all
documentation, and the yellow copy, should be sent to the STIR
MONITOR, who, with the STIR ASSISTANT, will handle all paperwork
involved in sending the PSR to CDC.

The documentation supplied to CDC with the PSR should display
the problem as clearly as possible. The program should be
reduced to the minimum which will produce the problem, and the
error should be clearly pointed out. Note that it is a good idea
to mark the output to show exactly where the product is not
performing correctly.

The PSR documentation should include the following where
applicable:

a) A punched card deck of a batch job which shows the
problem.

b) A permanent file containing this batch job. (An EWFILE
is preferred.)

c) Two copies of the output which shows the error. This
should be the execution of the above batch job. One
copy will be sent to CDC's local representative and the
other will be filed by the STIR MONITOR.

d) The PSR form, with the problem clearly described.

OTHRT 1U•1

PAGE 1

To send a PSR to CDC, the STIR MONITOR verifies that the
supplied materials are sufficient to explain the problem. Two
photocopies of the PSR form are made. The original PSR form,
one photocopy of it, and one copy of the STIR documentation are
sent to the STIR ASSISTANT. The STIR ASSISTANT logs the action,
sends the photocopy to CDC's local representative, and sends the
original PSR form and the documentation to CDC's office in
Sunnyvale. The STIR MONITOR files the following items:

a) The yellow copy of the STIR.
b) The second photocopy of the PSR form (attached to the

yellow copy).
c) The original documentation.
d) A copy of the documentation sent to CDC (unless

identical to [C]).
e) Copies of any permanent files submitted (on tape).

(CDC does not return PSR documentation. All of this filing will
enable the problem to be resubmitted to CDC or worked on locally
if necessary.)

If the STIR is to be fixed locally in addition to the PSR, this
should be noted in the 'reply' box. The STIR MONITOR will then
return the yellow to the ASSIGNEE. This STIR should be sent
back to the STIR MONITOR when the local fix is installed.

The STIR MONITOR will track the progress of all outstanding
PSR's. This is done by scanning the PSR SUMMARIES sent from
CDC. All action by CDC regarding a PSR is recorded on the
yellow copy (in the STIR MONITOR'S file) and in the STIRLOG.
When a PSR is closed by CDC (whether rejected or fixed) the STIR
MONITOR will retreive all the original documentation from the
files, re-attach it to the yellow copy, and return the STIR to
the original ASSIGNEE with a note of the disposition by CDC.
The person receiving the returned STIR/PSR should take one of
the following actions:

a) If CDC has fixed the problem, either by issuing
corrective code or by reporting that the problem
cannot be reproduced at a higher level, hold the STIR
until the fix is installed. The STIR is then handled
like any fixed STIR.

b) If CDC has refused to fix the problem, and we have fixed
it locally, the STIR may immediately be replied to as
fixed.

c) If CDC has refused to fix the problem, and we will not
be fixing it locally, the STIR should be replied to as
'NOT TO BE CORRECTED'.

PSR's which CDC could not reproduce should always be retested.
If the problem still occurs after the product is brought up to
the level at which CDC tested it, the STIR should be treated as
an MSU problem.

Any PSR for which the reply from CDC is incomplete or
unacceptable should be resubmitted to CDC. Additional
documentation should be incl >d to clearly show why CDC's

